Journal d’Analyse Mathematique

, Volume 94, Issue 1, pp 17–47 | Cite as

Schwarz-Christoffel mapping of multiply connected domains

  • T. K. Delillo
  • A. R. Elcrat
  • J. A. Pfaltzgraff


A Schwarz-Christoffel mapping formula is established for polygonal domains of finite connectivitym≥2 thereby extending the results of Christoffel (1867) and Schwarz (1869) form=1 and Komatu (1945),m=2. A formula forf, the conformal map of the exterior ofm bounded disks to the exterior ofm bounded disjoint polygons, is derived. The derivation characterizes the global preSchwarzianf″ (z)/f′ (z) on the Riemann sphere in terms of its singularities on the sphere and its values on them boundary circles via the reflection principle and then identifies a singularity function with the same boundary behavior. The singularity function is constructed by a “method of images” infinite sequence of iterations of reflecting prevertex singularities from them boundary circles to the whole sphere.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Cheng and L. Greengard,A method of images for the evaluation of electrostatic fields in systems of closely spaced conducting cylinders, SIAM J. Appl. Math.58 (1998), 122–141.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    H. Daeppen,Die Schwarz-Christoffel Abbildung für zweifach zusammenhängende Gebiete mit Anwendungen, PhD thesis, ETH, Zürich, 1988.MATHGoogle Scholar
  3. [3]
    T. K. DeLillo, A. R. Elcrat and J. A. Pfaltzgraff,Schwarz-Christoffel mapping of the annulus, SIAM Rev.43 (2001), 469–477.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    T. K. DeLillo, M. A. Horn and J. A. Pfaltzgraff,Numerical conformal mapping of multiply connected regions by Fornberg-like methods, Numer. Math.83 (1999), 205–230.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    T. Driscoll and L. N. Trefethen,Schwarz-Christoffel Mapping in the computer era, Proc. Int. Cong. Math., Geronimo GmbH, Rosenheim, Germany, 1998.Google Scholar
  6. [6]
    T. Driscoll and L. N. Trefethen,Schwarz-Christoffel Mapping, Cambridge University Press, 2002.Google Scholar
  7. [7]
    M. Embree and L. N. Trefethen,Green's functions for multiply connected domains via conformal mapping, SIAM Rev.41 (1999), 745–761.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    G. M. Goluzin,Geometric Theory of Functions of a Complex Variable, second edition, Nauka, Moscow, 1966; Engl. transl.: American Mathematical Society, Providence, RI, 1969.Google Scholar
  9. [9]
    H. Grunsky,Lectures on Theory of Functions in Multiply Connected Domains, Vandenhoeck and Ruprecht, Göttingen, 1978.MATHGoogle Scholar
  10. [10]
    P. Henrici,Applied and Computational Complex Analysis, Vol. 3, Wiley, New York, 1986.Google Scholar
  11. [11]
    C. Hu,Algorithm 785: A software package for computing Schwarz-Christoffel conformal transformations for doubly connected polygonal regions, ACM Trans. Math. Software24 (1998), 317–333.MATHCrossRefGoogle Scholar
  12. [12]
    Y. Komatu,Darstellung der in einem Kreisringe analytischen Funktionen nebst den Anwendungen auf konforme Abbildung uber Polygonalringebiete, Japan. J. Math.19 (1945), 203–215.MATHMathSciNetGoogle Scholar
  13. [13]
    Y. Komatu,Conformal mapping of polygonal domains, J. Math. Soc. Japan2 (1950), 133–147.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Y. Komatu,Topics from the classical theory of conformal mapping, inComplex Analysis, Banach Center Publications, Warsaw, 1983, pp. 165–183.Google Scholar
  15. [15]
    W. von Koppenfels and F. Stallmann,Praxis der Konformen Abbildung, Springer-Verlag, Berlin, 1959.MATHGoogle Scholar
  16. [16]
    A. I. Markushevich,Theory of Functions of a Complex Variable, Vol. 3, Prentice-Hall, Englewood Cliffs, 1965.Google Scholar
  17. [17]
    N. Nehari,Conformal Mapping, McGraw-Hill, New York, 1952.MATHGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2004

Authors and Affiliations

  • T. K. Delillo
    • 1
  • A. R. Elcrat
    • 1
  • J. A. Pfaltzgraff
    • 2
  1. 1.Department of Mathematics and StatisticsWichita State UniversityWichitaUSA
  2. 2.Department of Mathematics, CB 3250University of North CarolinaChapel HillUSA

Personalised recommendations