Israel Journal of Mathematics

, Volume 7, Issue 4, pp 393–397

A theorem on arrangements of lines in the plane

  • R. J. Canham


LetA be an arrangement ofn lines in the plane. IfR1, …,Rr arer distinct regions ofA, andRi is api-gon (i=1, …,r) then we show that\(\sum\limits_{i = 1}^r {P_i \leqq n + 4} \left( {_2^r } \right)\). Further we show that for allr this bound is the best possible ifn is sufficiently large.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Grünbaum,Convex Polytopes. Wiley, London-New York-Sydney, 1967.MATHGoogle Scholar
  2. 2.
    W. B. Carver,The polygonal regions into which a plane is divided by n straight lines, Amer. Math. Monthly48 (1941), 667–675.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    F. Levi,Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade, Ber. math.-phys. Kl. sächs. Akad. Wiss. Leipzig78 (1926), 256–267.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1969

Authors and Affiliations

  • R. J. Canham
    • 1
  1. 1.Michigan State UniversityEast Lansing

Personalised recommendations