Advertisement

Applied Biochemistry and Biotechnology

, Volume 73, Issue 1, pp 43–50 | Cite as

Biosorption of heavy metal ions by immobilized zoogloea and zooglan

  • Dae-Hee Ahn
  • Yun-Chul Chung
  • Daewon Pak
Original Articles

Abstract

ImmobilizedZoogloea and zooglan in calcium alginate-silica matrix was shown to have a high adsorption capacity for Cu and Cd ions. Our results showed that Cu-ion uptake in the presence of Ca and Mg ions can be enhanced using immobilizedZoogloea and zooglan. Heavy metal ion adsorption efficiency decreased in the following order: Cu > Cd > Zn > Cr. The adsorbed metal ions were desorbed completely using sulfuric acid. ImmobilizedZoogloea and zooglan which was repetitively regenerated adsorbed heavy metal ions without a loss of adsorption capacity.

Index Entries

immobilizedZoogloea and zooglan heavy metal adsorption regeneration of biomass packed-bed column 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brierley, J. A., Goyak, G. M., and Brierley, C. L. (1986), inImmobilization of Ions by Biosorption, Eccles, H. and Hunt, F., eds., Ellis Horwood, Chichester, UK, pp. 105–117.Google Scholar
  2. 2.
    Krambeer, C. (1987),Finish. Manage. 32, 36, 37.Google Scholar
  3. 3.
    de Carvalho, R. P., Chong, K. H., and Volesky, B. (1995),Biotechnol. Prog. 11, 39–44.CrossRefGoogle Scholar
  4. 4.
    Volesky, B. (1994), FEMSMicrobiol. Rev. 14, 291–302.Google Scholar
  5. 5.
    Niu, H., Xu, X. S., Wang, J. H., and Volesky, B. (1993),Biotechnol. Bioeng. 42, 785–787.CrossRefGoogle Scholar
  6. 6.
    Norberg, A. and Rydin, S. (1984),Biotechnol. Bioeng. 26, 265–268.CrossRefGoogle Scholar
  7. 7.
    Fourest, E. and Roux, J. C. (1994), FEMSMicrobiol. Rev. 14, 325–332.Google Scholar
  8. 8.
    Friedman, B. A. and Dugan, P. R. (1968),J. Bacteriol. 95, 1903–1909.Google Scholar
  9. 9.
    Ikeda, F., Shuto, H., Saito, T., Fukui, T., and Tomita, K. (1982),Eur. J. Biochem. 123, 437–445.CrossRefGoogle Scholar
  10. 10.
    Ahn, D. H., Chung, Y. C., Yoo, Y. J., Pak, D. W., and Chang, W. S. (1996),Biotechnol. Lett. 18, 917–922.CrossRefGoogle Scholar
  11. 11.
    Friedman, B. A. and Dugan, P. R. (1968),Develop. Ind. Microbiol. 9, 381–388.Google Scholar
  12. 12.
    Norberg, A. B. and Persson, H. (1984),Biotechnol. Bioeng. 26, 239–246.CrossRefGoogle Scholar
  13. 13.
    Standard Methods for the Examination of Water and Wastewater (1985), 16th ed. APHA, Washington, D.C.Google Scholar
  14. 14.
    Failla, M. L., Benedict, C. D. and Weinberg, E. D. (1976),J. Gen. Microbiol. 94, 23–36.Google Scholar
  15. 15.
    Chaiken, R. F. (1995),Biotechnol. Bioeng. 45, 454–457.CrossRefGoogle Scholar
  16. 16.
    Nikolaus F. E. I. Nestle and Rainer Kimmich (1996),Biotechnol. Bioeng. 51, 538–543.CrossRefGoogle Scholar
  17. 17.
    Mittleman, M. W. and Geesey, G. G. (1985),Appl. Environ. Microbiol. 49, 846–851.Google Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Dae-Hee Ahn
    • 1
  • Yun-Chul Chung
    • 1
  • Daewon Pak
    • 1
  1. 1.Korea Institute of Science and TechnologyEnvironment Research CenterSeoulKorea

Personalised recommendations