Journal d’Analyse Mathématique

, Volume 66, Issue 1, pp 85–115

Bi-lipschitz extensions in the plane

  • Paul MacManus
Article

Abstract

We show that a bi-Lipschitz mapF from a subset of a line or a circle into the plane can be extended to a bi-Lipschitz map of the whole plane onto itself, with the bi-Lipschitz constant depending only on that ofF.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [D] G. David,Opérateurs d'intégrale singulière sur les surfaces régulières, Ann. Sci. Ec. Norm. Sup. (4)21 (1988), 225–258.MATHGoogle Scholar
  2. [DS] G. David and S. Semmes,Singular integrals and rectifiable sets in ℝ n:au-delà des graphes lipschitziens, Astérisque193 (1991).Google Scholar
  3. [F] H. Federer,Geometric Measure Theory, Springer, New York, 1969.MATHGoogle Scholar
  4. [JK] D. S. Jerison and C. E. Kenig,Hardy spaces, A and singular integrals on chord-arc domains, Math. Scand.50 (1982), 221–248.MATHMathSciNetGoogle Scholar
  5. [R] S. Rickman,Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. A I395 (1966), 1–30.MathSciNetGoogle Scholar
  6. [Tu] P. Tukia,The Planar Schönflies Theorem for Lipschitz maps, Ann. Acad. Sci. Fenn. Series A I Math.5 (1980), 49–72.MathSciNetGoogle Scholar

Copyright information

© The Magnes Press, The Hebrew University 1995

Authors and Affiliations

  • Paul MacManus
    • 1
  1. 1.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations