Applied Biochemistry and Biotechnology

, Volume 66, Issue 1, pp 39–56 | Cite as

Isotherms for adsorption of cellobiohydrolase I and II fromtrichoderma reesei on microcrystalline cellulose

  • József Medve
  • Jerry Ståhlberg
  • Folke Tjerneld
Article

Abstract

Adsorption to microcrystalline cellulose (Avicel) of pure cellobiohydrolase I and II (CBH I and CBH II) fromTrichoderma reesei has been studied. Adsorption isotherms of the enzymes were measured at 4‡C using CBH I and CBH II alone and in reconstituted equimolar mixtures. Several models (Langmuir, Freundlich, Temkin, Jovanovic) were tested to describe the experimental adsorption isotherms. The isotherms did not follow the basic (one site) Langmuir equation that has often been used to describe adsorption isotherms of cellulases; correlation coefficients (R2) were only 0.926 and 0.947, for CBH I and II, respectively. The experimental isotherms were best described by a model of Langmuir type with two adsorption sites and by a combined Langmuir-Freundlich model (analogous to the Hill equation); using these models the correlation coefficients were in most cases higher than 0.995. Apparent binding parameters derived from the two sites Langmuir model indicated stronger binding of CBH II compared to CBH I; the distribution coefficients were 20.7 and 3.7 L/g for the two enzymes, respectively. The binding capacity, on the other hand, was higher for CBH I, 1.0 Μmol (67 mg) per gram Avicel, compared to 0.57 Μmol/g (30 mg/g) for CBH II. The isotherms when analyzed with the combined Langmuir-Freundlich model indicated presence of unequal binding sites on cellulose and/or negative cooperativity in the binding of the enzyme molecules.

Index entries

Trichoderma reesei cellulase cellobiohydrolase adsorp-tion isotherm cellulose hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goyal, A., Ghosh, B., and Eveleigh, D. (1991),Bioresource Technol. 36, 37–50.CrossRefGoogle Scholar
  2. 2.
    Nidetzky, B., Steiner, W., and Claeyssens, M. (1994),Biachem. J. 303, 817–823.Google Scholar
  3. 3.
    Ståhlberg, J., Johansson, G., and Pettersson, G. (1991),Bio/Technology 9, 286–290.CrossRefGoogle Scholar
  4. 4.
    Ståhlberg, J., Johansson, G., and Pettersson, G. (1993),Biochim. Biophys. Acta 1157, 107–113.Google Scholar
  5. 5.
    Tomme, P., vanTilbeurgh, H., Pettersson, G., vanDamme, J., Vandekerckhove, J., Knowles, J., Teeri, T., and Claeyssens, M. (1988),Eur. J. Biochem. 170, 575–581.CrossRefGoogle Scholar
  6. 6.
    Galbe, M., Eklund, R., and Zacchi, G. (1990),Appl. Biochem. Biotech. 24/25, 87–101.CrossRefGoogle Scholar
  7. 7.
    Zacchi, G., Skoog, K., and Hahn-HÄgerdal, B. (1988),Biotechnol. Bioeng. 32, 460.CrossRefGoogle Scholar
  8. 8.
    Castanon, M. and Wilke, C. R. (1980),Biotechnol. Bioeng. 22, 1037–1053.CrossRefGoogle Scholar
  9. 9.
    Tjerneld, F., Persson, I., Albertsson, P.-å., and Hahn-HÄgerdal, B. (1985),Biotechnol.Bioeng. 27, 1036–1043.CrossRefGoogle Scholar
  10. 10.
    Tjerneld, F., Persson, I., Albertsson, P.-å., and Hahn-HÄgerdal, B. (1985),Biotechnol.Bioeng. Symp. 15, 419–429.Google Scholar
  11. 11.
    Beldman, G., Voragen, A. G. J., Rombouts, F. M., Searle-van Leeuwen, M. F., and Pilnik, W. (1987),Biotechnol. Bioeng. 30, 251–257.CrossRefGoogle Scholar
  12. 12.
    Tomme, P., Heriban, V., and Claeyssens, M. (1990),Biotechnol. Lett. 12, 525–530.CrossRefGoogle Scholar
  13. 13.
    Woodward, J., Hayes, M. K., and Lee, N. E. (1988),Bio/Technology 6, 301–304.CrossRefGoogle Scholar
  14. 14.
    Kyriacou, A., Neufeld, R. J., and MacKenzie, C. R. (1989),Biotechnol. Bioeng. 33, 631–637.CrossRefGoogle Scholar
  15. 15.
    Ryu, D. D. Y., Kim, C, and Mandels, M. (1984),Biotechnol. Bioeng. 26, 488–496.CrossRefGoogle Scholar
  16. 16.
    Medve, J., Ståhlberg, J., and Tjerneld, F. (1994),Biotechnol. Bioeng. 44, 1064–1073.CrossRefGoogle Scholar
  17. 17.
    Kim, D. W., Yang, J. H., and Jeong, Y. K. (1988),Appl. Microbiol. Biotechnol. 28, 148–154.CrossRefGoogle Scholar
  18. 18.
    Kim, D. W., Kim, T. S., Jeong, Y. K., and Lee, J. K. (1992),J. Ferm. Bioeng. 73, 461–466.CrossRefGoogle Scholar
  19. 19.
    Kyriacou, A., Neufeld, R. J., and MacKenzie, C. R. (1988),Enzyme Microb. Technol. 10, 675–681.CrossRefGoogle Scholar
  20. 20.
    Lee, S. B., Shin, H. S., Ryu, D. D. Y., and Mandels, M. (1982),Biotechnol. Bioeng. 24, 2137–2153.CrossRefGoogle Scholar
  21. 21.
    Ooshima, H., Sakata, M., and Harano, Y. (1983),Biotechnol. Bioeng. 25, 3103–3114.CrossRefGoogle Scholar
  22. 22.
    Bhikhabhai, R., Johansson, G., and Pettersson, G. (1984),J. Appl. Biochem. 6, 336–345.Google Scholar
  23. 23.
    Hiemenz, P. C. (1986),Principles of Colloid and Surface Chemistry, 2nd ed., Marcel Dekker, New York.Google Scholar
  24. 24.
    Gilkes, N. R., Jervis, E., Henrissat, B., Tekant, B., Miller, R. C., Jr., Warren, R. A. J., and Kilburn, D. G. (1992),J. Biol. Chem. 267, 6743–6749.Google Scholar
  25. 25.
    Moore, W. J. (1972),Physical Chemistry, 5th ed., Longman London.Google Scholar
  26. 26.
    James, E. A. and Do, D. D. (1991),J. Chromatogr. 542, 19–28.CrossRefGoogle Scholar
  27. 27.
    Zubay, G. (1993),Biochemistry, 3rd ed., Brown, Dubuque, IA.Google Scholar
  28. 28.
    Jovanovic, D. S. (1970),Kolloid Z.u Z. Polym. 235, 1203–1214.CrossRefGoogle Scholar
  29. 29.
    Huang, J.-X. and Horváth, Cs. (1987),J. Chromatogr. 406, 275–284.CrossRefGoogle Scholar
  30. 30.
    Huang, J.-X. and Horváth, Cs. (1987),J. Chromatogr. 406, 285–294.CrossRefGoogle Scholar
  31. 31.
    McGhee, J. D. and vonHippel, P. H. (1974),J. Mol. Biol. 86, 469–489.CrossRefGoogle Scholar
  32. 32.
    Sild, V., Ståhlberg, J., Pettersson, G., and Johansson, G. (1996),FEBS Lett. 378, 51–56.CrossRefGoogle Scholar
  33. 33.
    Yoshida, H., Nishihara, H., and Kataoka, T. (1993),Biotechnol. Bioeng. 41, 280–286.CrossRefGoogle Scholar
  34. 34.
    Jennissen, H. P. (1976),Biochemistry 15, 5683–5692.CrossRefGoogle Scholar
  35. 35.
    Walker, G. J. and Hope, P. M. (1963),Biochem. J. 86, 452–462.Google Scholar
  36. 36.
    Kraulis, P. J., Clore, G. M., Nilges, M., Jones, T. A., Pettersson, G., Knowles, J., and Gronenbom, A. M. (1989),Biochemistry 28, 7241–7257.CrossRefGoogle Scholar
  37. 37.
    Linder, M., Mattinen, M.-L., Kontteli, M., Lindeberg, G., Ståhlberg, J., Drakenberg, T., Reinikainen, T., Pettersson, G., and Annila, A. (1995),Protein Science 4, 1056–1064.Google Scholar
  38. 38.
    Chanzy, H., Henrissat, B., and Vuong, R. (1984), FEBSLett. 172, 193–197.CrossRefGoogle Scholar
  39. 39.
    Chanzy, H. and Henrissat, B. (1985),FEBS Lett. 184, 285–288.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • József Medve
    • 1
  • Jerry Ståhlberg
    • 2
  • Folke Tjerneld
    • 1
  1. 1.Department of BiochemistryUniversity of LundLundSweden
  2. 2.Department of Molecular Biology, Biomedical CentreUniversity of UppsalaUppsalaSweden

Personalised recommendations