Advertisement

Applied Biochemistry and Biotechnology

, Volume 67, Issue 3, pp 215–226 | Cite as

Alginate Properties and Heavy Metal Biosorption by Marine Algae

  • Eric Fourest
  • Bohumil Volesky
Original Articles

Abstract

The physical properties of the alginate component in four different brown seaweeds (Sargassumfluitans, Ascophyllum nodosum, Fucus vesiculo-sus, andLaminaria japonica) were characterized using potentiometric titration,13C-nuclear magnetic resonance (NMR), chemical analysis, and viscosity measurements. The heavy metal binding capacities of the corresponding seaweeds were directly proportional to their respective total carboxyl group content, and related to the electronegativity of the elements investigated (Ca, Zn, Cd, Cu, and Pb). The uronic acid composition or sequence of the alginate component did not affect the metal uptake properties of the biosorbents studied here. However, the alginate leaching owing to its solubilization by Na ions was observed to decrease with increasing intrinsic viscosity of the extracted alginate, related to its molecular weight, and with increasing apparent acidic dissociation constant, related to the alginate density inside the biomass.

Index Entries

Brown seaweed biosorbent biorecovery cation exchanger carboxyl groups intrinsic viscosity extraction nuclear magnetic resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gadd, G. M. (1988), inBiotechnology, vol. 6bSpecial Microbial Processes, Rehm, H.-J., ed. VCH Verlagsgesellschaft, Weinheim, Germany, pp. 401–433.Google Scholar
  2. 2.
    Rachlin, J. W. and Grosso, A. (1993),Arch. Environ. Contant. Toxicol. 24, 16–20.CrossRefGoogle Scholar
  3. 3.
    Strandberg, G. W., Shumate S. E., II, Parrott, J., Jr., and North, S. E. (1981), inEnvironmental Speciation and Monitoring Needs for Trace-Metal Containing Substances from Energy-Related Processes, Brinckman, F. E. and Fish, R. H., eds., U.S. Department of Commerce, National Bureau of Standards, Washington, DC., pp. 27–34.Google Scholar
  4. 4.
    Volesky, B. and Holan, Z. R. (1995),Biotechnol. Prog. 11, 235–250.CrossRefGoogle Scholar
  5. 5.
    Volesky, B., ed. (1990),Biosorption of Heavy Metals, CRC., Boca Raton, FL.Google Scholar
  6. 6.
    Fourest, E. and Volesky, B. (1996),Environ. Sci. Technol. 30, 277–282.CrossRefGoogle Scholar
  7. 7.
    Haug, A., Larsen, B., and Smidsrod, O. (1966),Acta Chem. Scand. 20, 183–190.Google Scholar
  8. 8.
    Haug, A., Larsen, B., and Smidsrod, O. (1974),Carbohydr. Res. 32, 217–225.CrossRefGoogle Scholar
  9. 9.
    Haug, A., Myklestad, S., Larsen, B., and Smidsrod, O. (1967),Acta Chem. Scand. 21, 768–773.Google Scholar
  10. 10.
    Smidsrod, O. and Haug, A. (1972),Acta Chem. Scand. 26, 2063–2074.Google Scholar
  11. 11.
    Thorn, D., Grant, G. T., Morris, E. R., and Rees, D. A. (1982),Carbohydr. Res. 100, 29–42.CrossRefGoogle Scholar
  12. 12.
    Smidsrod, O. and Haug, A. (1965),Acta Chem. Scand. 19, 329–340.CrossRefGoogle Scholar
  13. 13.
    Haug, A. and Smidsord, O. (1965),Acta Chem. Scand. 19, 341–351.Google Scholar
  14. 14.
    de Carvalho, R. P., Chong, K.-H., and Volesky, B. (1994),Biotechnol. Lett. 46, 875–880.CrossRefGoogle Scholar
  15. 15.
    Bullock, A. L. and Guthrie, J. D. (1965), inMethods in Carbohydrate Chemistry, 5, Whistler, R. L., BeMiller, J. N., and Wolfrom, M. L., eds., Academic, New York, NY, pp. 409–411.Google Scholar
  16. 16.
    Chong, K. H. and Volesky, B. (1995),Biotechnol. Bioeng. 47, 451–460.CrossRefGoogle Scholar
  17. 17.
    Leusch, A., Holan, Z. R., and Volesky, B. (1995),J. Chem. Technol. Biotechnol. 62, 279–288.CrossRefGoogle Scholar
  18. 18.
    Fourest, E., Serre, A., and Roux, J.-C. (1996),Toxicol. Environ. Microbiol. 54, 1–4.Google Scholar
  19. 19.
    Percival, E. and McDowell, R. H. (1967),Chemistry and Enzymology of Marine Algal Polysaccharides, Academic London, pp. 137–143.Google Scholar
  20. 20.
    Kennedy, J. F. and Bradshaw, I. J. (1987),Carbohydr. Polymers 7, 35–50.CrossRefGoogle Scholar
  21. 21.
    Haug, A. and Smidsrod, O. (1962),Acta Chem. Scand. 16, 1569–1578.Google Scholar
  22. 22.
    Grasdalen, H., Larsen, B., and Smidsrod, O. (1981),Carbohydr. Res. 89, 179–191.CrossRefGoogle Scholar
  23. 23.
    Helfferich, F. (1962),Ion Exchange, McGraw-Hill, NY.Google Scholar
  24. 24.
    Lin, F. G. and Marinsky, J. A. (1993),React. Polymers 19, 27–45.CrossRefGoogle Scholar
  25. 25.
    Kawarada, H., Hirai, A., Odani, H., Lida, T., and Nakajima, A. (1990),Polymer Bull. 24, 551–557.CrossRefGoogle Scholar
  26. 26.
    Wang Z.-Y., Zhang, Q.-Z., Konno, M., and Saito, S. (1993),Biopolymers 33, 703–711.CrossRefGoogle Scholar
  27. 27.
    Wang, Z.-Y., White, J. W., Konno, M., Saito, S., and Nozawa, T. (1995),Biopolymers 35, 227–238.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Eric Fourest
    • 1
  • Bohumil Volesky
    • 1
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations