Journal d’Analyse Mathématique

, Volume 75, Issue 1, pp 185–228 | Cite as

Dense analytic subspaces in fractalL 2-spaces



We show that for certain self-similar measures μ with support in the interval 0≤x≤1, the analytic functions {e i2πnx :n=0,1,2, …} contain an orthonormal basis inL 2 (μ). Moreover, we identify subsetsP ⊂ ℕ0 = {0,1,2,...} such that the functions {e n :n ∈ P} form an orthonormal basis forL 2 (μ). We also give a higher-dimensional affine construction leading to self-similar measures μ with support in ℝ ν , obtained from a given expansivev-by-v matrix and a finite set of translation vectors. We show that the correspondingL 2 (μ) has an orthonormal basis of exponentialse i2πλ·x , indexed by vectors λ in ℝ ν , provided certain geometric conditions (involving the Ruelle transfer operator) hold for the affine system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Art64] E. Artin,The Gamma Function, Holt, Rinehart and Winston, New York, 1964, translated by M. Butler from the German original,Einführung in die Theorie der Gammafunktion, Hamburger Mathematische Einzelschriften, Vol. 1, Verlag B.G. Teubner, Leipzig, 1931.MATHGoogle Scholar
  2. [BaGe94] C. Bandt and G. Gelbrich,Classification of self-affine lattice tilings, J. London Math. Soc. (2)50 (1994), 581–593.MATHMathSciNetGoogle Scholar
  3. [Ban91] C. Bandt,Self-similar sets 5: Integer matrices and fractal tilings ofn, Proc. Amer. Math. Soc.112 (1991), 549–562.MATHCrossRefMathSciNetGoogle Scholar
  4. [Ban97] C. Bandt,Self-similar tilings and patterns described by mappings, inThe Mathematics of Long-Range Aperiodic Order (Waterloo, Ontario, 1995) (R. Moody, ed.), NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci., Vol. 489, Kluwer Academic Publishers Group, 1997.Google Scholar
  5. [BoTa87] E. Bombieri and J. E. Taylor,Quasicrystals, tilings, and algebraic number theory: Some preliminary connections, inThe Legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985) (L. Keen, ed.), Contemp. Math., Vol. 64, American Mathematical Society, Providence, RI, 1987, pp. 241–264.Google Scholar
  6. [BrJo96] O. Bratteli and P. E. T. Jorgensen,Iterated function systems and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc., to appear.Google Scholar
  7. [Car95] H. P. Cartan,Elementary Theory of Analytic Functions of One or Several Complex Variables, Dover, New York, 1995.Google Scholar
  8. [CoRa90] J.-P. Conze and A. Raugi,Fonctions harmoniques pour un operateur de transition et applications, Bull. Soc. Math. France118 (1990), 273–310.MATHMathSciNetGoogle Scholar
  9. [Dau92] I. Daubechies,Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., Vol. 61, Society for Industrial and Applied Mathematics, Philadelphia, 1992.MATHGoogle Scholar
  10. [Fa186] K. J. Falconer,The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, Vol. 85, Cambridge University Press, Cambridge, 1986.Google Scholar
  11. [Fug74] B. Fuglede,Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal.16 (1974), 101–121.MATHCrossRefMathSciNetGoogle Scholar
  12. [Hil26] D. Hilbert,Über das Unendliche, Math. Ann.95 (1926), 161–190.CrossRefMathSciNetGoogle Scholar
  13. [Hof95] A. Hof,On diffraction by aperiodic structures, Comm. Math. Phys.169 (1995), 25–43.MATHCrossRefMathSciNetGoogle Scholar
  14. [Hut81] J. E. Hutchinson,Fractals and self similarity, Indiana Univ. Math. J.30 (1981), 713–747.MATHCrossRefMathSciNetGoogle Scholar
  15. [JoPe91] P. E. T. Jorgensen and S. Pedersen,An algebraic spectral problem for L 2(Ω), Ω ⊂R n, C. R. Acad. Sci. Paris Ser. I. Math.312 (1991), 495–498.MathSciNetGoogle Scholar
  16. [JoPe92] P. E. T. Jorgensen and S. Pedersen,Spectral theory for Borel sets inn of finite measure, J. Funct. Anal.107 (1992), 72–104.CrossRefMathSciNetGoogle Scholar
  17. [JoPe93a] P. E. T. Jorgensen and S. Pedersen,Group-theoretic and geometric properties of multivariable Fourier series, Exposition. Math.11 (1993), 309–329.MathSciNetGoogle Scholar
  18. [JoPe93b] P. E. T. Jorgensen and S. Pedersen,Harmonic analysis of fractal measures induced by representations of a certain C *-algebra, Bull. Amer. Math. Soc. (N.S.)29 (1993), 228–234.MathSciNetGoogle Scholar
  19. [JoPe94] P. E. T. Jorgensen and S. Pedersen,Harmonic analysis and fractal limit-measures induced by representations of a certain C *-algebra, J. Funct. Anal.125 (1994), 90–110.CrossRefMathSciNetGoogle Scholar
  20. [JoPe95] P. E. T. Jorgensen and S. Pedersen,Estimates on the spectrum of fractals arising from affine iterations, inFractal Geometry and Stochastics (C. Bandt, S. Graf and M. Zähle, eds.), Progress in Probability, Vol. 37, Birkhäuser, Basel, 1995, pp. 191–219.Google Scholar
  21. [JoPe96] P. E. T. Jorgensen and S. Pedersen,Harmonic analysis of fractal measures, Constr. Approx.12 (1996), 1–30.MathSciNetCrossRefGoogle Scholar
  22. [JoPe97] P. E. T. Jorgensen and S. Pedersen,Spectral pairs in Cartesian coordinates, preprint, University of Iowa, 1997.Google Scholar
  23. [KSS95] M. Keane, M. Smorodinsky and B. Solomyak,On the morphology of γ-expansions with deleted digits, Trans. Amer. Math. Soc.347 (1995), 955–966.MATHCrossRefMathSciNetGoogle Scholar
  24. [LaWa96a] J. C. Lagarias and Y. Wang,Tiling the line with translates of one tile, Invent. Math.124 (1996), 341–365.MATHCrossRefMathSciNetGoogle Scholar
  25. [LaWa96b] J. C. Lagarias and Y. Wang,Self-affine tiles inn, Adv. Math.121 (1996), 21–49.MATHCrossRefMathSciNetGoogle Scholar
  26. [Neh75] Z. Nehari,Conformal Mapping, Dover, New York, 1975.Google Scholar
  27. [Ped87] S. Pedersen,Spectral theory of commuting self-adjoint partial differential operators, J. Funct. Anal.73 (1987), 122–134.MATHCrossRefMathSciNetGoogle Scholar
  28. [Ped97] S. Pedersen,Fourier series and geometry, preprint, Wright State University, 1997.Google Scholar
  29. [PoSi95] M. Pollicott and K. Simon,The Hausdorff dimension of λ-expansions with deleted digits, Trans. Amer. Math. Soc.347 (1995), 967–983.MATHCrossRefMathSciNetGoogle Scholar
  30. [Rue88] D. Ruelle,Noncommutative algebras for hyperbolic diffeomorphisms, Invent. Math.93 (1988), 1–13.MATHCrossRefMathSciNetGoogle Scholar
  31. [Rue94] D. Ruelle,Dynamical zeta functions for piecewise monotone maps of the interval, CRM Monograph Series, Vol. 4, American Mathematical Society, Providence, 1994.MATHGoogle Scholar
  32. [Str89] R. S. Strichartz,Fourier asymptotics of fractal measures, J. Funct. Anal.89 (1990), 154–187.MATHCrossRefMathSciNetGoogle Scholar
  33. [Str90] R. S. Strichartz,Self-similar measures and their Fourier transforms, I, Indiana Univ. Math. J.39 (1990), 797–817.MATHCrossRefMathSciNetGoogle Scholar
  34. [Str93] R. S. Strichartz,Self-similar measures and their Fourier transforms, II, Trans. Amer. Math. Soc.336 (1990), 335–361.CrossRefMathSciNetGoogle Scholar
  35. [Str94] R. S. Strichartz,Self-similarity in harmonic analysis, J. Fourier Anal. Appl.1 (1994), 1–37.MATHCrossRefMathSciNetGoogle Scholar
  36. [Str95] R. S. Strichartz,Fractals in the large, preprint, Cornell University, 1995.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1998

Authors and Affiliations

  1. 1.Department of MathematicsThe University of IowaIowa CityUSA
  2. 2.Department of MathematicsWright State UniversityDaytonUSA

Personalised recommendations