Cell Biophysics

, Volume 7, Issue 1, pp 1–29 | Cite as

Neutron microscopy

The low-damage imaging of specialized organic materials
  • Arden Steinbach
Original Articles


It is shown that, insofar as radiation damage is concerned, transmission neutron microscopy using neutrons in the energy range ≈0.0001–1.0 eV is extremely attractive for the imaging of specialized organic materials. By “specialized organic materials” is meant organic specimens composed entirely of specific isotopes that have been selected on the basis of their favorable properties with regard to radiation damage. In connection with such specimens, it is demonstrated that at a resolution of, for example, 100 Å, neutrons will have an advantage over soft X-rays in terms of radiation damage, provided that the inherent (neutron) bright field image contrast turns out to be greater than 10−5. Suggestions relating to (a) the comprehensive calculation of the radiation damage sustained by specialized organic specimens under slow neutron irradiation, (b) the construction of a theory of image formation in the neutron microscope, (c) the development of neutron lenses/focusing devices, and (d) the development of a brighter neutron source (essential for neutron microscopy) are outlined in some detail. The paper concludes with two appendices, which provide important background material.

Index Entries

Microscopy neutrons radiation damage organic materials isotopic replacement Rose equation image formation lenses/focusing devices bright sources undulators photoneutron sources 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Physics Today, June 1983, p. 42.Google Scholar
  2. 2.
    Robinson, A. L. (1983),Science 220, 940.PubMedCrossRefGoogle Scholar
  3. 3.
    Steyerl, A., and Schuetz, G. (1978),Appl. Phys. 17, 45.CrossRefGoogle Scholar
  4. 4.
    Schuetz, G., Steyerl, A., and Mampe, W. (1980),Phys. Rev. Lett. 44, 1400.CrossRefGoogle Scholar
  5. 5.
    Klein, A. G., and Opat, G. I. (1979), Applications of the Fresnel Diffraction of Neutrons, inNeutron Interferometry (Bonse, U., and Rauch, H., eds.), Clarendon Press, Oxford, pp. 97–107.Google Scholar
  6. 6.
    Moellenstedt, G. (1980), New Applications of Fresnel Zone Plates for X-Rays, Ultrasound, and Neutrons, inProc. Seventh European Congress on Electron Microscopy (Brederoo, P., and Boom, G., eds.) Seventh European Congress on Electron Microscopy Foundation, Leiden, pp. 2–9.Google Scholar
  7. 7.
    Kearney, P. D., Klein, A. G., Opat, G. I., and Gaehler, R. (1980),Nature 287, 313.CrossRefGoogle Scholar
  8. 8.
    Klein, A. G., Kearney, P. D., and Opat, G. I. (1981),Phys. Lett. 83A, 71.Google Scholar
  9. 9.
    Indenbom, V. L. (1979),JETP Lett. 29, 5.Google Scholar
  10. 10.
    Alefeld, B., Badurek, G., Rauch, H. (1981),Phys. Lett. 83A, 32.Google Scholar
  11. 11.
    Zeilinger, A., and Shull, C. G. (1979),Phys. Rev. B19, 3957.Google Scholar
  12. 12.
    Zeilinger, A. (1980),Nukleonika 25, 871.Google Scholar
  13. 13.
    Eremeev, I. P. (1978),JETP Lett. 27, 10.Google Scholar
  14. 14.
    Alferov, D. F., Bashmakov, Yu. A., Belovintsev, K. A., Bessonov, E. G., and Cherenkov, P. A. (1979),Particle Accelerators 9, 223.Google Scholar
  15. 15.
    Hofmann, A. (1980),Phys. Rep. 64, 253.CrossRefGoogle Scholar
  16. 16.
    Shintake, T., Huke, K., Tanaka, J., Sata, I., and Kumabe, I. (1982),Japan J. Appl. Phys. 21, L601.CrossRefGoogle Scholar
  17. 17.
    Shintake, T., Juke, K., Tanaka, J., Sato, I., and Kumabe, I. (1983),Japan. J. Appl. Phys. 22, 844.CrossRefGoogle Scholar
  18. 18.
    Breedlove, Jr., J. R. (1970), PhD Thesis, Rice University.Google Scholar
  19. 19.
    Breedlove, Jr., J. R., and Trammell, G. T. (1970),Science 170, 1310.PubMedCrossRefGoogle Scholar
  20. 20.
    Evans, R. D. (1955),The Atomic Nucleus, McGraw-Hill, New York, Chap. 25.Google Scholar
  21. 21.
    Dertinger, H., and Jung, H. (1969),Molekulare Strahlenbiologie, Springer-Verlag, Berlin, p. 42.Google Scholar
  22. 22.
    Cassels, J. M. (1950), The Scattering of Neutrons by Crystals, inProgress in Nuclear Physics (Frisch, O. R., ed.), Vol. 1, Butterworth-Springer, London, pp. 185–215.Google Scholar
  23. 23.
    Uphaus, R. A., Flaumenhaft, E., and Katz, J. J. (1967),Biochim. Biophys. Acta 141, 625.PubMedGoogle Scholar
  24. 24.
    Katz, J. J., and Crespi, H. L. (1966),Science 151, 1187.PubMedCrossRefGoogle Scholar
  25. 25.
    Murphy, J., DeSaive, C., Giaretti, W., Kendall, F., and Nicolini, C. (1977),J. Cell Sci. 25, 87.PubMedGoogle Scholar
  26. 26.
    Isaacson, M. S. (1976), Specimen Damage in the Electron Microscope, inPrinciples and Techniques of Electron Microscopy (Hayat, M. A., ed.), Vol. 7, Van Nostrand Reinhold Co., pp. 1–76.Google Scholar
  27. 27.
    Isaacson, M., Johnson, D., and Crewe, A. V. (1973),Rad. Res. 55, 205.CrossRefGoogle Scholar
  28. 28.
    Sayre, D., Kirz, J., Feder, R., Kim, D. M., and Spiller, E. (1977),Ultramicroscopy 2, 337.PubMedCrossRefGoogle Scholar
  29. 29.
    Kirz, J., and Sayre, D. (1980), Soft X-Ray Microscopy of Biological Specimens, inSynchrotron Radiation Research (Winick, H., and Doniach, S., eds.), Plenum Press, New York, pp. 277–322.Google Scholar
  30. 30.
    Mott, N. F., and Massey, H. S. W. (1965),Theory of Atomic Collisions, Clarendon Press, Oxford, Third Edition, Chap. 16.Google Scholar
  31. 31.
    Lindhard, J., Nielsen, V., and Scharff, M. (1968),Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser 36, 1.Google Scholar
  32. 32.
    Ishitani, T., Shimizu, R., and Murata, K. (1972),Japan. J. Appl. Phys. 11, 125.CrossRefGoogle Scholar
  33. 33.
    Ishitani, T., Shimizu, R., and Murata, K. (1972),Phys. Stat. Sol. B50, 681.Google Scholar
  34. 34.
    Ishitani, T., and Shimizu, R. (1975),Appl. Phys. 6, 241.CrossRefGoogle Scholar
  35. 35.
    Ishitani, T., Shimase, A., and Hosaka, S. (1983),Japan. J. Appl. Phys. 22, 329.CrossRefGoogle Scholar
  36. 36.
    Bacon, G. E. (1975),Neutron Diffraction, Clarendon Press, Sec. 5.6.Google Scholar
  37. 37.
    Scherzer, O. (1970),Ber. Bunsen-Gesell. 74, 1154.Google Scholar
  38. 38.
    Zeitler, E., and Thomson, M. G. R. (1970),Optik 31, 258, 359.Google Scholar
  39. 39.
    Thomson, M. G. R. (1973),Optik 39, 15.Google Scholar
  40. 40.
    Rose, H. (1974),Optik 39, 416.Google Scholar
  41. 41.
    Rose, H. (1975),Optik 42, 217.Google Scholar
  42. 42.
    Rose, H. (1977),Ultramicroscopy 2, 251.PubMedCrossRefGoogle Scholar
  43. 43.
    Fertig, J., and Rose, H. (1977),Ultramicroscopy 2, 269.PubMedCrossRefGoogle Scholar
  44. 44.
    Ade, George (1977),Optik 49, 113.Google Scholar
  45. 45.
    Fertig, J., and Rose, H. (1979),Optik 54, 165.Google Scholar
  46. 46.
    Morse, P. M., and Feshbach, H. (1953),Methods of Theoretical Physics, McGraw-Hill, New York, pp. 1495–1498.Google Scholar
  47. 47.
    Gurevich, I. I., and Tarasov, L. V. (1968),Low-Energy Neutron Physics, North-Holland, Amsterdam, Sec. 1.4.3.Google Scholar
  48. 48.
    Schnabl, H. (1971),Z. angew. Physik 31, 214.Google Scholar
  49. 49.
    Ishizuka, K., and Uyeda, N. (1977),Acta Cryst. A33, 740.Google Scholar
  50. 50.
    Windsor, C. G. (1973), Basic Theory of Thermal Neutron Scattering by Condensed Matter, inChemical Applications of Thermal Neutron Scattering (Willis, B. T. M., ed.), Oxford University Press, pp. 1–30.Google Scholar
  51. 51.
    Federov, B. A., Ptitsyn, O. B., and Voronin, L. A. (1972),FEBS Lett. 28, 188.CrossRefGoogle Scholar
  52. 52.
    Federov, B. A., Ptitsyn, O. B., and Voronin, L. A. (1974),J. Appl. Cryst. 7, 181.CrossRefGoogle Scholar
  53. 53.
    Engelman, D. M., and Moore, P. B. (1975),Ann. Rev. Biophys. Bioengr. 4, 219.CrossRefGoogle Scholar
  54. 54.
    Hiismaki, P. (1969),Acta Cryst. A25, 377.Google Scholar
  55. 55.
    Solem, J. C., and Chapline, G. F. (1983), X-Ray Biomicroholography, in Los Alamos Report # LA-UR 83-1211.Google Scholar
  56. 56.
    Rudolph, D., and Schmahl, G. (1980),Ann. NY Acad. Sci. 342, 94.CrossRefGoogle Scholar
  57. 57.
    Schmahl, G., Rudolph, D., Niemann, B., and Christ, O. (1980),Ann. NY Acad. Sci.,342, 368.PubMedCrossRefGoogle Scholar
  58. 58.
    Schmahl, G., Rudolph, D., Niemann, B., and Christ, O. (1980),Quart. Rev. Biophys. 13, 297.CrossRefGoogle Scholar
  59. 59.
    Robinson, A. L. (1982),Science 215, 150.PubMedCrossRefGoogle Scholar
  60. 60.
    Rarback, H., and Kirz, J., The Optical Performance of Apodized Zone Plates, to be published inProc. Soc. Photo-Optical Instrumentation Engineers, Vol. 316.Google Scholar
  61. 61.
    Indenbom, V. L., and Aladzhadzhyan, G. M. (1976),Sov. Phys. Dokl. 21, 191.Google Scholar
  62. 62.
    Aristov, V. V. (1979), Prospects of X-Ray Holography, inImaging Processes and Coherence in Physics, Proceedings of a Workshop held at the Centre de Physique, Les Houches, France (Schlenker et al., eds.), Springer-Verlag, Berlin, pp. 371–375.Google Scholar
  63. 63.
    Shull, C. G. (November 30, 1983), private communication.Google Scholar
  64. 64.
    Physics Today, March 1972, p. 27.Google Scholar
  65. 65.
    Farges, Y. (1980),Appl. Optics 19, 4021.Google Scholar
  66. 66.
    Leighton, R. B. (1959),Principles of Modern Physics, McGraw-Hill, pp. 738–741.Google Scholar
  67. 67.
    Mughabghab, S. F., Divadeenam, M., Holden, N. E. (1981),Neutron Cross Sections, Vol. 1, Part A, Academic Press.Google Scholar
  68. 68.
    Rauch, H. (1979), Scope of Neutron Interferometry, inNeutron Interferometry (Bonse, U., and Rauch, H., eds.), Clarendon Press, Oxford, pp. 161–194.Google Scholar
  69. 69.
    Bacon, G. E. (1975),Neutron Diffraction, Clarendon Press, Oxford, p. 23.Google Scholar
  70. 70.
    Foderaro, A. (1971),The Elements of Neutron Interaction Theory, MIT Press, Chap. 9.Google Scholar
  71. 71.
    Bacon, G. E. (1975),Neutron Diffraction, Clarendon Press, Oxford, Sec. 5.6.Google Scholar
  72. 72.
    Bacon, G. E. (1975),Neutron Diffraction, Clarendon Press, Oxford, Secs. 2.2 and 5.6.Google Scholar
  73. 73.
    Gurevitch, I. E., and Tarasov, L. B. (1968),Low-Energy Neutron Physics, North-Holland, Amsterdam, p. 28.Google Scholar
  74. 74.
    Foderaro, A. (1971),The Elements of Neutron Interaction Theory, MIT Press, Cambridge, MA, Sec. 6.9.Google Scholar
  75. 75.
    Foderaro, A. (1971),The Elements of Neutron Interaction Theory, MIT Press, Cambridge, MA, Sec. 7.2.Google Scholar
  76. 76.
    Foderaro, A. (1971),The Elements of Neutron Interaction Theory, MIT Press, Cambridge, MA, Sec. 12.7.Google Scholar
  77. 77.
    Peticolas, W. L. (1975), Dynamics of Polypeptide Chains, inNeutron Scattering for the Analysis of Biological Structures (Schoenborn, B., ed.), Brookhaven National Laboratory BNL 50453, pp. VI-27 to VI-36.Google Scholar
  78. 78.
    Jackson, J. D. (1975),Classical Electrodynamics, Wiley, New York, p. 570.Google Scholar

Copyright information

© The Humana Press Inc. 1985

Authors and Affiliations

  • Arden Steinbach
    • 1
  1. 1.Department of Applied Physics and Electrical EngineeringOregon Graduate CenterBeaverton

Personalised recommendations