Advertisement

Israel Journal of Mathematics

, Volume 65, Issue 1, pp 17–43 | Cite as

Admissible observation operators for linear semigroups

  • George Weiss
Article

Abstract

Consider a semigroupT on a Banach spaceX and a (possibly unbounded) operatorC densely defined inX, with values in another Banach space. We give some necessary as well as some sufficient conditions forC to be an admissible observation operator forT, i.e., any finite segment of the output functiony(t)=C T t x,t≧0, should be inL p and should depend continuously on the initial statex. Our approach is to start from a description of the map which takes initial states into output functions in terms of a functional equation. We also introduce an extension ofC which permits a pointwise interpretation ofy(t)=C T t x, even if the trajectory ofx is not in the domain ofC.

Keywords

Banach Space Continuous Semigroup Distribute Parameter System Graph Norm Lebesgue Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Curtain,On semigroup formulations of unbounded observations and control action for distributed systems, inProc. of the M.T.N.S. Symposium, Beer Sheva, Israel, 1983, Springer-Verlag, Berlin, 1984.Google Scholar
  2. 2.
    R. F. Curtain and A. J. Pritchard,Infinite dimensional linear systems theory, Lecture Notes in Information Sciences, Vol. 8, Springer-Verlag, Berlin, 1978.zbMATHGoogle Scholar
  3. 3.
    J. Diestel and J. J. Uhl,Vector Measures, Amer. Math. Soc. Surveys, Vol. 15, Providence, RI, 1977.Google Scholar
  4. 4.
    S. Dolecki and D. L. Russell,A general theory of observation and control, SIAM J. Control Optim.15 (1977), 185–220.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Dym and H. P. McKean,Fourier Series and Integrals, Academic Press, Orlando, 1972.zbMATHGoogle Scholar
  6. 6.
    P. A. Fuhrmann,Linear Systems and Operators in Hilbert Space, McGraw-Hill, New York, 1981.zbMATHGoogle Scholar
  7. 7.
    L. F. Ho and D. L. Russell,Admissible input elements for systems in Hilbert space and a Carleson measure criterion, SIAM J. Control Optim.21 (1983), 614–640.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    I. Lasiecka and R. Triggiani,Stabilization of Neumann boundary feedback of parabolic equations: The case of trace in the feedback loop, Appl. Math. Optim.10 (1983), 307–350.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. Nagel (ed.),One-parameter semigroups of positive operators, Lecture Notes in Math, Vol. 1184, Springer-Verlag, Berlin, 1986.zbMATHGoogle Scholar
  10. 10.
    A. Pazy,Semigroups of Linear Operators and Applications to P.D.E.’s, Appl. Math. Sciences, Vol. 44, Springer-Verlag, New York, 1983.Google Scholar
  11. 11.
    A. J. Pritchard and D. Salamon,The linear quadratic control problem for infinite dimensional systems with unbounded input and output operators, SIAM J. Control Optim.25 (1987), 121–144.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. J. Pritchard and S. Townley,A stability radius for infinite dimensional systems, inProceedings, Vorau, Austria, 1986, Lecture Notes in Control and Information Sciences, Vol. 102, Springer-Verlag, Berlin, 1987.Google Scholar
  13. 13.
    A. J. Pritchard and A. Wirth,Unbounded control and observation systems and their duality, SIAM J. Control Optim.16 (1978), 535–545.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    D. Salamon,Control and Observation of Neutral Systems, Research Notes in Mathematics, Vol. 91, Pitman, London, 1984.zbMATHGoogle Scholar
  15. 15.
    D. Salamon,Realization Theory in Hilbert Space, University of Wisconsin — Madison, Technical Summary Report 2835, 1985, revised version submitted in 1988.Google Scholar
  16. 16.
    D. Salamon,Infinite dimensional systems with unbounded control and observation: A functional analytic approach, Trans. Am. Math. Soc.300 (1987), 383–431.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    T. Seidman,Observation and prediction for one-dimensional diffusion equations, J. Math. Anal. Appl.51 (1975), 165–175.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    G. Weiss,Admissibility of unbounded control operators, SIAM J. Control Optim.27 (1989).Google Scholar
  19. 19.
    G. Weiss,Admissibility of input elements for diagonal semigroups on l 2, Systems & Control Letters10 (1988), 79–82.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Y. Yamamoto,Realization theory of infinite-dimensional linear systems, Part I, Math. Syst. Theory15 (1981), 55–77.zbMATHCrossRefGoogle Scholar
  21. 21.
    R. F. Curtain and G. Weiss,Well posedness of triples of operators (in the sense of linear systems theory), Proceedings of the Conference on Distributed Parameter Systems, Vorau, Austria, July 1988, to appear.Google Scholar
  22. 22.
    G. Weiss,The representation of regular linear systems on Hilbert spaces, Proceedings of the Conference on Distributed Parameter Systems, Vorau, Austria, July 1988, to appear.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1989

Authors and Affiliations

  • George Weiss
    • 1
  1. 1.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations