Journal d’Analyse Mathématique

, Volume 85, Issue 1, pp 371–396 | Cite as

Earthquakes and circle packings

  • G. Brock Williams


We prove that earthquakes on hyperbolic surfaces can be approximated by discrete earthquakes constructed using circle packings. Consequently, we obtain a combinatorial version of Thurston’s Earthquake Theorem. Any surface can be approximated by combinatorial earthquakes of a packable surface. This provides a controlled combinatorial method for deforming hyperbolic surfaces.


Boundary Vertex Hyperbolic Surface Interior Vertex Circle Packing Geodesic Lamination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. M. Andreev,Convex polyhedra in Lobacevskii space, Mat. Sb. (N.S.)10 (1970), 413–440 (English).MATHGoogle Scholar
  2. [2]
    E. M. Andreev,Convex polyhedra of finite volume in Lobacevskii space, Math. USSR Sbornik12 (1970), 255–259 (English).CrossRefGoogle Scholar
  3. [3]
    R. W. Barnard and G. B. Williams,Combinatorial excursions in moduli space, Pacific J. Math., to appear.Google Scholar
  4. [4]
    A. F. Beardon and K. Stephenson,The uniformization theorem for circle packings, Indian Univ. Math. J.39 (1990), 1383–1425.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    F. Bonahon,Earthquakes on Riemann surfaces and on measured geodesic laminations, Trans. Amer. Math. Soc.330 (1992), 69–95.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    P. L. Bowers and K. Stephenson,Uniformizing dessins and Belyi maps via circle packing, preprint.Google Scholar
  7. [7]
    P. L. Bowers and K. Stephenson,The set of circle packing points in the Teichmüller space of a surface of finite conformal type is dense, Math. Proc. Camb. Phil. Soc.111 (1992), 487–513.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    P. L. Bowers and K. Stephenson,Circle packings in surfaces of finite type: An in situ approach with application to moduli, Topology32 (1993), 157–183.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    P. L. Bowers and K. Stephenson,A regular pentagonal tiling of the plane, Conform. Geom. Dynam.1 (1997), 58–68.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    R. Brooks,Circle packings and co-compact extensions of Kleinian groups, Invent. Math.86 (1986), 461–469.MathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Brooks,Some relations between graph theory and Riemann surfaces, inProceedings of the Ashkelon Workshop on Complex Function Theory (L. Zalcman, ed.), Israels Math. Conf. Proc.11 (1997), 61–73.Google Scholar
  12. [12]
    P. Buser,Geometry and Spectra of Compact Riemann Surfaces, Birkhäusers, Boston, 1992.MATHGoogle Scholar
  13. [13]
    A. J. Casson and S. A. Bleiler,Automorphisms of Surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, Vol. 9, Cambridge University Press, Cambridge, 1988.MATHCrossRefGoogle Scholar
  14. [14]
    C. Collins and K. Stephenson,A circle packing algorithm, preprint.Google Scholar
  15. [15]
    T. Dubejko and K. Stephenson,Circle packing: Experiments in discretes analytic function theory, Experiment. Math.4 (1995), 307–348.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    A. Fathi et al.,Travaux de Thurston sur les surfaces, Astériques (Orsay Séminaire), 1979.Google Scholar
  17. [17]
    F. P. Gardiner and N. Lakic,Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, Vol. 76, American Mathematical Society, Providence, RI, 2000.MATHGoogle Scholar
  18. [18]
    Zheng-Xu He and O. Rodin,Convergence of circle packing of finite valence to Riemann mappings, Comm. Anal. Geom.1 (1993), 31–41.MathSciNetMATHGoogle Scholar
  19. [19]
    Zheng-Xu He and O. Schramm,On the convergence of circle packings to the Riemann map, Invent. Math.125 (1996), 285–305.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Y. Imayoshi and M. Taniguchi,An Introduction to Teichmüller Spaces, Springer-Verlag, Berlin, 1992.MATHCrossRefGoogle Scholar
  21. [21]
    S. P. Kerckhoff,The Nielsen realization problem, Ann. of Math.117 (1983), 235–265.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    P. Koebe,Kontaktprobleme der Konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig. Math.-Phys. Kl.88 (1936), 141–164.Google Scholar
  23. [23]
    S. G. Krantz,Conformal mappings, American Scientist87 (1999), 436–445.Google Scholar
  24. [24]
    O. Lehto and K. I. Virtanen,Quasiconformal Mappings in the Plane, second edn., Springer-Verlag, Berlin-Heidelberg-New York, 1973.MATHCrossRefGoogle Scholar
  25. [25]
    D. Minda and B. Rodin,Circle packing and Riemann surfaces, J. Analyse Math.57 (1991), 221–249.MathSciNetMATHGoogle Scholar
  26. [26]
    A. Papadopoulos,On Thurston’s boundary of Teichmüller space and the extension of earthquakes, Topology Appl.41 (1991), 147–177.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    B. Rodin and D. Sullivan,The convergence of circle packings to the Riemann mapping, J. Differential Geom.26 (1987), 349–360.MathSciNetMATHGoogle Scholar
  28. [28]
    K. Stephenson,Circle packing and discretes analytic function theory, preprint.Google Scholar
  29. [29]
    K. Stephenson,A probabilistic proof of Thurston’s conjecture on circle packings, Rend. Sem. Mat. Fis. Milano66 (1996), 201–291.MathSciNetCrossRefGoogle Scholar
  30. [30]
    K. Stephenson,The approximation of conformal structures via circle packing, inComputational Methods and Function Theory 1997 (Nicosia) (N. Papamichael, S. Ruscheweyh and E. B. Saff, eds.), Ser. Approx. Decompos., World Scientific, River Edge, NJ, 1997, pp. 551–582.Google Scholar
  31. [31]
    W. Thurston,The Geometry and Topology of 3-Manifolds, Princeton University Notes, preprint.Google Scholar
  32. [32]
    W. Thurston,The finite Riemann mapping theorem, 1985, Invited talk, An International Symposium at Purdue University on the occasion of the proof of the Bieberbachs conjecture, March 1985.Google Scholar
  33. [33]
    W. Thurston,Earthquakes in two-dimensional hyperbolic geometry, inLow-dimensional Topology and Kleinian Groups (Conventry/Durham, 1984), London Math. Soc. Lecture Note Ser., Vol. 112, Cambridge University Press, 1986, pp. 90–112.Google Scholar
  34. [34]
    W. Thurston,On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.)19 (1988), 417–431.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    G. B. Williams,Discrete conformal welding, Ph.D. thesis, University of Tennessee, Knoxville, May 1999.Google Scholar
  36. [36]
    G. B. Williams,Approximating quasisymmetries using circle packings, Discrete Comput. Geom.25 (2001), 103–124.MathSciNetMATHGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2001

Authors and Affiliations

  • G. Brock Williams
    • 1
  1. 1.Department of MathematicsTexas Tech UniversityLubbrockUSA

Personalised recommendations