Journal d’Analyse Mathématique

, Volume 71, Issue 1, pp 173–193

The rozenblum-lieb-cwikel inequality for markov generators

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Sh. Birman,On the spectrum of singular boundary-value problems, Mat. Sbornik55 (1961), 125–174. (Russian)MathSciNetGoogle Scholar
  2. [2]
    M. Sh. Birman and M. Z. Solomyak,Quantitive analysis in Sobolev imbedding theorems and applications to spectral theory, Tenth Mathematical School, Izd. Inst. Mat. Akad. Nauk Ukrain. SSSR, Kiev, 1974, pp. 5–189 (Russian); English transl, in Amer. Math. Soc. Transi. (2)114 (1980), 1–132.Google Scholar
  3. [3]
    M. Sh. Birman and M. Z. Solomyak,Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, Advances in Soviet Math.7 (1991), 1–55.MathSciNetGoogle Scholar
  4. [4]
    J. P. Conlon,A new proof of the Cwikel-Lieb-Rosenbljum bound, Rocky Mountain J. Math.15 (1985), 117–122.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    W. Cupala,The upper bound of the number of eigenvalues for a class of perturbed Dirichlet forms, Studia Math.113 (2) (1995), 109–125.MATHMathSciNetGoogle Scholar
  6. [6]
    M. Cwikel,Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. (2)106 (1977), 93–100.CrossRefMathSciNetGoogle Scholar
  7. [7]
    E. B. Davies,Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.MATHGoogle Scholar
  8. [8]
    E. Hebey,Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius, Amer. J. Math.118 (1996), 291–300.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    P. Li and S-T. Yau,On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys.88 (1983), 309–318.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    E. Lieb,Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. Amer. Math. Soc.82 (1976), 751–753.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    V. Liskevich and Yu. Semenov,Some problems on Markov semigroups, inAdvances in Partial Differential Equations, Akademie Verlag, Berlin, 1996 (in press).Google Scholar
  12. [12]
    V. G. Maz’ya,Sobolev spaces, Izdat. Leningr. Univ., Leningrad, 1985 (Russian); English transi.: Springer-Verlag, Berlin, 1985.Google Scholar
  13. [13]
    G. V. Rozenblyum,The distribution of the discrete spectrum for singular differential operators, Dokl. Akad. Nauk SSSR202 (1972), 1012–1015. (Russian).MathSciNetGoogle Scholar
  14. [14]
    B. Simon,Weak trace ideals and number of bound states of Schrödinger operator, Trans. Amer. Math. Soc.224 (1976), 367–380.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Solomyak,On the negative discrete spectrum of the operator δN — αVfor a class of unbounded domains in Rd, inProc. of the Conference in PDE, Toronto, 1996 (in press).Google Scholar
  16. [16]
    N. Th. Varopoulos,Small time Gaussian estimates of heat diffusion kernels. Part I: The semigroup technique, Bull. Sci. Math.113 (1989), 253–277.MATHMathSciNetGoogle Scholar
  17. [17]
    N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon,Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992.Google Scholar
  18. [18]
    A. C. Zaanen,Riesz Spaces II, North-Holland, Amsterdam-New York-Oxford, 1983.MATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1997

Authors and Affiliations

  1. 1.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations