Journal d’Analyse Mathématique

, Volume 71, Issue 1, pp 87–102

Sharp forms of nevanlinna’s error terms



Let f(z) be a meromorphic function in the plane. If ψ(t)/t andp(t) are two positive, continuous and non-decreasing functions on [1,∞) with ∫1dt/ψ(t) = ∞ and ∫1dt/p(t) = ∞, then\(S(r,f) \le \log + \frac{{\psi \left( {T(r,f)} \right)}}{{p(r)}} + O(1)\) asr → ∞ outside a small exceptional set, provided that the divergence of the integral ∫1rdt/ψ(t) is slow enough. The same forms for the logarithmic derivative and for the ramification term are obtained. It is shown by example that the estimates are best possible.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Hebrew University of Jerusalem 1997

Authors and Affiliations

  1. 1.Fachbereich 3 MathematikTechnische UniversitÄt BerlinBerlinGermany
  2. 2.Institute of MathematicsAcademia SinicaBeijingChina

Personalised recommendations