Journal d’Analyse Mathématique

, Volume 71, Issue 1, pp 87–102 | Cite as

Sharp forms of nevanlinna’s error terms



Let f(z) be a meromorphic function in the plane. If ψ(t)/t andp(t) are two positive, continuous and non-decreasing functions on [1,∞) with ∫ 1 dt/ψ(t) = ∞ and ∫ 1 dt/p(t) = ∞, then\(S(r,f) \le \log + \frac{{\psi \left( {T(r,f)} \right)}}{{p(r)}} + O(1)\) asr → ∞ outside a small exceptional set, provided that the divergence of the integral ∫ 1 r dt/ψ(t) is slow enough. The same forms for the logarithmic derivative and for the ramification term are obtained. It is shown by example that the estimates are best possible.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. A. Gol’dberg and V. A. Grinshtein,The logarithmic derivative of a merornorphic function (Russian), Mat. Zametki19 (1976), 525–530.MATHMathSciNetGoogle Scholar
  2. [2]
    W. K. Hayman,Meromorphic Functions, Clarendon Press, Oxford, 1964.MATHGoogle Scholar
  3. [3]
    A. Hinkkanen,A sharp form of Nevanlinna’s second fundamental theorem, Invent. Math.108 (1992), 549–574.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Jankowski,An estimate for the logarithmic derivative of meromorphic functions, Analysis14 (1994), 185–195.MATHMathSciNetGoogle Scholar
  5. [5]
    S. Lang,The error term in Nevanlinna theory, Duke Math. J.56 (1988), 193–218.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    S. Lang and W. Cherry,Topics in Nevanlinna theory, Lecture Notes in Math., Vol.1443, Springer, Berlin, 1990.Google Scholar
  7. [7]
    J. Miles,A sharp form of the lemma on the logarithemic derivative, J. London Math. Soc.45 (2) (1992), 243–254.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    R. Nevanlinna,Analytic Functions, Princeton University Press, Princeton, 1960.MATHGoogle Scholar
  9. [9]
    C. F. Osgood,Sometimes effective ThueSiegel-Schmidt-Nevanlinna bounds, or better, J. Number Theory21 (1985), 347–389.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    P. Vojta,Diophantine approximations and value distribution theory, Lecture Notes in Math., Vol. 1239, Springer, Berlin, 1987.Google Scholar
  11. [11]
    P. Wong,On the second main theorem of Nevanlinna theory, Amer. J. Math.111 (1989), 549–583.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    L. Yang,Value Distribution Theory, Springer-Verlag and Science Press, Berlin, 1993.MATHGoogle Scholar
  13. [13]
    Z. Ye,On Nevanlinna’s error terms, Duke Math. J.64 (1991), 243–260.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1997

Authors and Affiliations

  1. 1.Fachbereich 3 MathematikTechnische UniversitÄt BerlinBerlinGermany
  2. 2.Institute of MathematicsAcademia SinicaBeijingChina

Personalised recommendations