Applied Biochemistry and Biotechnology

, Volume 56, Issue 1, pp 1–7 | Cite as

A spectrophotometric assay for biotinbinding sites of immobilized avidin

  • Violeta G. Janolino
  • Javier Fontecha
  • Harold E. Swaisgood
Original Articles

Abstract

A rapid and sensitive spectrophotometric assay was developed for the measurement of biotin-binding sites of immobilized avidin. The method is based on the reaction of avidin with excess biotin followed by assay of the unbound biotin using the HABA (2-[4′-hydroxyazobenzene] benzoic acid) method. Three solids possessing variable amounts of monomeric avidin were examined; viz., succinamidopropyl-controlled-pore glass (CPG-500), crosslinked 6% beaded agarose (Sepharose-CL-6B**), and crosslinked bis-acrylamide/azlactone (3M Emphaze Biosupport Medium AB1. Results indicate that the total biotin-binding sites of monomeric avidin immobilized on CPG-500, Sepharose-CL-6B, and 3M Emphaze are 0.229, 0.093, and 0.218 µmol biotin per mL beads, respectively. Assays for exchangeable biotinbinding sites gave values greater than 90% of the total sites. The spectrophotometric HABA method described is an alternative to assays based on tracers, thus the handling of radioactive material is avoided.

Index Entries

Spectrophotometric assays biotin-binding sites avidin, immobilized 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Green, N. M. and Toms, E. J. (1973),Biochem. J. 133, 687.Google Scholar
  2. 2.
    Gitlin, G., Bayer, E. A., and Wilchek, M. (1987),Biochem. J. 242, 923.Google Scholar
  3. 3.
    Henrikson, K. P., Allen, S. H. G., and Maloy, W. L. (1979),Anal. Biochem. 94, 366.CrossRefGoogle Scholar
  4. 4.
    Kohanski, R. A. and Lane, M. D. (1990), inMethods in Enzymology, vol. 184, Wilchek, M. and Bayer, E. A., eds., pp. 194–200, Academic, New York.Google Scholar
  5. 5.
    Gravel, R. A., Lam, K. F., Mahuran, D., and Kronis, A. (1980),Arch. Biochem. Biophys. 210, 669.CrossRefGoogle Scholar
  6. 6.
    Kohanski, R. A. and Lane, M. D. (1985),J. Biol. Chem. 260, 5014.Google Scholar
  7. 7.
    Cook, G. M. W. and Buckie, J. W. (1990),in Methods in Enzymology, vol. 184, Wilchek, M. and Bayer, E. A., eds., pp. 304–314, Academic, New York.Google Scholar
  8. 8.
    Green, N. M. (1970), inMethods in Enzymology, vol. XVIII(A), McCormick, D. B. and Wright, L. D., eds., pp. 418–424, Academic, New York.Google Scholar
  9. 9.
    Green, N. M. (1965),Biochem. J. 94, 23c.Google Scholar
  10. 10.
    Janolino, V. G. and Swaisgood, H. E. (1982),Biotechnol. Bioeng. 24, 1069.CrossRefGoogle Scholar
  11. 11.
    DuVal, G., Swaisgood, H. E., and Horton, H. R. (1984),J. Appl. Biochem. 6, 240.Google Scholar
  12. 22.
    Swaisgood, H. E. and Horton, H. R. (1987),in Methods in Enzymology, vol. 143, Jakoby, W. B. and Griffith, O. W., eds., pp. 504–510, Academic, New York.Google Scholar
  13. 13.
    Bonde, M., Pontopiddan, H., and Pepper, D. S. (1992),Anal. Biochem. 200, 195.CrossRefGoogle Scholar
  14. 14.
    Pierce (1989), inImmunoPure HABA Reagent Manual, Pierce Chemical Co., Rockford, IL.Google Scholar
  15. 15.
    Swaisgood, H. E., Horton, H. R., and Mosbach, K. (1976), inMethods in Enzymology, vol. XLIV, Mosbach, K., ed., pp. 504–515, Academic, New York.Google Scholar
  16. 16.
    Swaisgood, H. E., Janolino, V. G., and Horton, H. R. (1978),Arch. Biochem. Biophys. 191, 259.CrossRefGoogle Scholar
  17. 17.
    DuVal, G., Swaisgood, H. E., and Horton, H. R. (1985),Biochemistry 24, 2067.CrossRefGoogle Scholar
  18. 18.
    Swaisgood, H. E. and Chaiken, I. M. (1986),Biochemistry 25, 4148.CrossRefGoogle Scholar
  19. 19.
    Thresher, W. C. and Swaisgood, H. E. (1990),J. Mol. Recogn. 3, 220.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Violeta G. Janolino
    • 1
  • Javier Fontecha
    • 1
  • Harold E. Swaisgood
    • 1
  1. 1.Department of Food ScienceNorth Carolina State UniversityRaleigh

Personalised recommendations