Advertisement

Antibody-antigen binding kinetics a model for multivalency antibodies for large antigen systems

  • Ajit Sadana
  • Tuan Vo-Dinh
Original Articles

Abstract

This work presents a theoretical analysis of the influence of multivalency of antigen on external mass transfer-limited binding kinetics to divalent antibody for biosensor applications to polycyclic-aromatic systems. Both cases are considered wherein the antigen is in solution and the antibody is either covalently or noncovalently attached to a cylindrical fiber-optic biosensor, and the antibody is in solution and the antigen is attached to the surface. Both single-step and dual-step binding processes are considered. The rate of attachment of antigen to antibody (or vice versa) is linear for the valencies (or reaction orders) analyzed in the time frame (100 min) considered. The rate of attainment of saturation levels of antigen or antibody in solution close to the surface is very rapid (within 20 min). An increase in the valency of the antigen in solution has the effect of decreasing the order of reaction (for valency, Ν ≥ 1). An increase in the number of steps increases the order of reaction, as expected. An increase in the valency of the antigen in solution decreases the saturation level of the antigen close to the surface and the rate of antigen attachment to the antibody on the surface for all Damkohler numbers. A decrease in the diffusional limitations decreases the effect of valency (or reaction order) on saturation levels of cs/c0. Nondimensional plots presented in the analysis help extend the analysis to different antigen-antibody systems. An increase in the valency of the antibody in solution has the effect of increasing the order of reaction (for Ν < 2). The effects in this case are reverse to those described earlier. For valency greater than2, the reaction order is dependent on the antigen valency, whether it is in solution or immobilized on the surface. The general analysis presented here should be applicable to most surface reactions that involve ligand-receptor binding wherein multiple-binding sites are involved on either the receptor or the ligand.

Index Entries

Antigen-antibody binding immunosensor binding kinetics biosensor polycyclic-aromatic compounds (PACs) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vo-Dinh, T. and Niessner R. Eds. (1995),Environmental Monitoring and Hazardous Waste Site Remediations. SPIE Publishers, Bellingham, Washington.Google Scholar
  2. 2.
    Vo-Dinh, T., Tromberg, B. J., Griffin, G,D., Ambrose, K. R., Sepaniak, M. J., and Gradenhire, E. M. (1987),Appl. Spectrosc. 41, 735.CrossRefGoogle Scholar
  3. 3.
    Vo-Dinh, T., Nolan, T., Cheng, Y. F., Sepaniak, M. J., and Alarie, J. P. (1990),Appl. Spectrosc. 44, 128.CrossRefGoogle Scholar
  4. 4.
    Vo-Dinh, T., Alarie, J. P., Johnson, R. W., Sepaniak, M. J., and Santella, R. M. (1991),Clin. Chem. 37, 532.Google Scholar
  5. 5.
    Vo-Dinh, T., Sepaniak, M. J., Griffin, G. D., and Alarie, J. P. (1993),Immunomethods 3, 85–92.CrossRefGoogle Scholar
  6. 6.
    Tromberg, B. J., Sepaniak, M. J., Alarie, J. P., Vo-Dinh, T., and Santella, R. M. (1988),Anal. Chem. 60, 1901.CrossRefGoogle Scholar
  7. 7.
    Alarie, J. P., Sepaniak, M. J., and Vo-Dinh, T. (1990),Anal. Chim. Ada 229, 169–176.CrossRefGoogle Scholar
  8. 8.
    Giaver, I. (1976),J. Immunology,116, 766–771.Google Scholar
  9. 9.
    Stenberg, M., Stiblert, L., and Nygren, H. A. (1986),J. Theor. Biol. 120, 129–136.CrossRefGoogle Scholar
  10. 10.
    Nygren, H. and Stenberg, M. (1985),J. Colloid Interf. Sci. 107, 560–566.CrossRefGoogle Scholar
  11. 11.
    Stenberg, M. and Nygren, H. A. (1982)Anal. Biochem. 127, 183–192.CrossRefGoogle Scholar
  12. 12.
    Place J. F., Sutherland, R. M., and Dahne, C. (1985),Biosensors 1, 321–353.CrossRefGoogle Scholar
  13. 13.
    Sadana, A. and Sii, D. (1992a),J. Colloid Interf. Sci. 151, 166–177.CrossRefGoogle Scholar
  14. 14.
    Sadana, A. and Sii, D. (1992b),Biosens. & Bioelectron. 7, 559–568.CrossRefGoogle Scholar
  15. 15.
    Sadana, A. and Madagula, A. (1993),Biotechnol. Progr. 9, 259–266.CrossRefGoogle Scholar
  16. 16.
    Sadana, A. and Madagula, A. (1994),Biosens. Bioelectron. 9, 45–55.CrossRefGoogle Scholar
  17. 17.
    Sadana, A. and Beelaram, A. (1994),Biotechnol. Prog. 10, 291–298.CrossRefGoogle Scholar
  18. 18.
    Sadana, A. and Beelaram, A. (1995),Biosens. Bioelectron. 10, 310–316.CrossRefGoogle Scholar
  19. 19.
    Sadana, A., Alarie, J. P., and Vo-Dinh, T. (1995),Talanta 42, 1567.CrossRefGoogle Scholar
  20. 20.
    Sadana, A. and Chen, Z. (1996),Biophys. Chem. 57, 177–187.CrossRefGoogle Scholar
  21. 21.
    Patankar, S. V. (1980),Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.Google Scholar
  22. 22.
    Kopelman, R. (1988),Science,241, 1620–1626.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Ajit Sadana
    • 1
    • 2
  • Tuan Vo-Dinh
    • 1
  1. 1.Advanced Monitoring Development Group,Life Sciences DivisionOak Ridge National LaboratoryOak Ridge
  2. 2.Chemical Engineering DepartmentUniversity of Mississippi

Personalised recommendations