Advertisement

Journal d’Analyse Mathématique

, Volume 96, Issue 1, pp 269–282 | Cite as

Quasiconformal extension of biholomorphic mappings in several complex variables

  • Hidetaka Hamada
  • Gabriela Kohr
Article

Abstract

Letf(z, t) be a subordination chain fort ∈ [0, α], α>0, on the Euclidean unit ballB inC n. Assume thatf(z) =f(z, 0) is quasiconformal. In this paper, we give a sufficient condition forf to be extendible to a quasiconformal homeomorphism on a neighbourhood of\(\bar B\). We also show that, under this condition,f can be extended to a quasiconformal homeomorphism of\(\overline {R^{2n} } \) onto itself and give some applications.

Keywords

Complex Variable Biholomorphic Mapping Local Diffeomorphism Schwarz Mapping Quasiconformal Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be1] J. Becker,Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math.255 (1972), 23–43.zbMATHMathSciNetGoogle Scholar
  2. [Be2] J. Becker,Conformal mappings with quasiconformal extensions, inAspects of Contemporary Mathematics (D. Brannan and J. Clunie, eds.), Academic Press, London-New York, 1980, pp. 37–77.Google Scholar
  3. [BePo] J. Becker and C. Pommerenke,Über die quasikonforme Fortsetzung schlichter Funktionen, Math. Z.161 (1978), 69–80.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [Br] A. A. Brodskii,Quasiconformal extension of biholomorphic mappings inTheory of Mappings and Approximation of Functions, Naukova Dunka, Kiew, 1983, pp. 30–34.Google Scholar
  5. [FaKrZy] M. Fait, J. Krzyż and J. Zygmunt,Explicit quasiconformal extensions for some classes of univalent functions, Comment. Math. Helv.51 (1976), 279–285.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [GrHaKo] I. Graham, H. Hamada and G. Kohr,Parametric representation of univalent mappings in several complex variables, Canad. J. Math.54 (2002), 324–351.zbMATHMathSciNetGoogle Scholar
  7. [GrKo] I. Graham and G. Kohr,Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003.zbMATHGoogle Scholar
  8. [HaKo] H. Hamada and G. Kohr,Loewner chains and quasiconformal extension of holomorphic mappings, Ann. Polon. Math.81 (2003), 85–100.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [Kr] J. Krzyż,Convolution and quasiconformal extension, Comment. Math. Helv.51 (1976), 99–104.CrossRefMathSciNetzbMATHGoogle Scholar
  10. [Pf1] J. A. Pfaltzgraff,Subordination chains and univalence of holomorphic mappings in C n, Math. Ann.210 (1974), 55–68.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Pf2] J. A. Pfaltzgraff,Subordination chains and quasiconformal extension of holomorphic maps in C n, Ann. Acad. Sci. Fenn. Ser. A I Math.1 (1975), 13–25.MathSciNetzbMATHGoogle Scholar
  12. [ReMa] F. Ren and J. Ma,Quasiconformal extension of biholomorphic mappings of several complex variables, J. Fudan Univ. Nat. Sci.34 (1995), 545–556.zbMATHMathSciNetGoogle Scholar
  13. [RoSu] K. Roper and T. J. Suffridge,Convexity properties of holomorphic mappings in C n, Trans. Amer. Math. Soc.351 (1999), 1803–1833.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Sa] S. Saks,Theory of the Integral, English translation by L. C. Young; with two additional notes by Stefan Banach.—2nd rev. ed., G. E. Stechert, New York, 1937.Google Scholar
  15. [Su] T. J. Suffridge,Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, inComplex Analysis, Lecture Notes in Math.599, Springer-Verlag, Berlin, 1976, pp. 146–159.CrossRefGoogle Scholar
  16. [Vä] J. Väisälä,Lectures on n-dimensional Quasiconformal Mappings, Lecture Notes in Math.229, Springer-Verlag, Berlin-New York, 1971.zbMATHGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2005

Authors and Affiliations

  • Hidetaka Hamada
    • 1
  • Gabriela Kohr
    • 2
  1. 1.Faculty of EngineeringKyushu Sangyo UniversityFukuokaJapan
  2. 2.Faculty of Mathematics and Computer ScienceBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations