Applied Biochemistry and Biotechnology

, Volume 59, Issue 2, pp 167–175 | Cite as

Selectivity of methyl-fructoside synthesis with Β-fructofuranosidase

  • Maria Rodríguez
  • Alfonso Gómez
  • Fernando González
  • Eduardo Barzana
  • Agustin López-Munguía
Original Articles


Enzyme synthesis of methyl fructoside was studied usingΒ-fructofuranosidase fromSacharomyces cerevisiae and sucrose and methanol as substrates. Taking into account the inhibition and deactivation effects of methanol on the enzyme, a system with 4.9M (20%, v/v) methanol was selected. At this alcohol level, 35% of sucrose is converted to fructoside at low or high substrate concentrations. The effect of enzyme concentration, pH, and temperature on both the synthesis and the hydrolysis of the fructoside was investigated. It was found that if the reaction proceeds at pH 6.0, 4‡C and/or 0.014 mg/mL (3 U/mL) of Β-fructofuranosidase at varying sucrose concentrations, methyl fructoside may be obtained with a minimum loss of the fructoside at the end of the reaction.

Index Entries

Alcoholysis Methyl-fructoside Β-fructofuranosidase invertase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dordick, J. (1991), inApplied Biocatalysis, vol.1, Blanch, W. H. and Duglas, S. eds., Clark Marcel Dekker, New York pp. 24–45.Google Scholar
  2. 2.
    Stevenson, D., Stanley, R., and Furneaux, R. (1993),Biotechnol. Bioeng. 42, 657–666.CrossRefGoogle Scholar
  3. 3.
    Shinoyama, H. and Yasui, T. (1988),Agric. Biol. Chem. 52(9), 2375–2377.Google Scholar
  4. 4.
    Shinoyama, H., Kamiyama, Y., and Yasui, T. (1988),Agric. Biol. Chem. 52(9), 2197–2202.Google Scholar
  5. 5.
    Shinoyama, H., Gama, Y., Nakahara, H., Ishigami, Y., and Yasui, T. (1991),Chem. Soc. Jpn. 64, 291–292.CrossRefGoogle Scholar
  6. 6.
    Straathof, A., Vrijenhoef, J., Sprangers, E., Van Bekkum, H., and Kiedoom, G. (1988),J. Carbohydr. Chem. 7(1), 223–238.CrossRefGoogle Scholar
  7. 7.
    Selisko, B., Ulbrich-Hofman, R., and Schellenberger, A. (1990),Biotechnol. Bioeng. 35, 1006–1010.CrossRefGoogle Scholar
  8. 8.
    Vulfson, E., Patel, R., Beecher, J., Andrews, A., and Law, B. (1990),Enzyme Microb. Technol. 12(12), 950–954.CrossRefGoogle Scholar
  9. 9.
    Vulfson, E., Patel, R., and Law, B. (1990),Biotechnol. Lett. 12(6), 397–402.CrossRefGoogle Scholar
  10. 10.
    Shinoyama, H., Takei, K., Ando, A., Fujii, T., Sasaki, M., Doi, Y., and Yasui, T. (1991),Agric. Biol. Chem. 55(6), 1679–1681.Google Scholar
  11. 11.
    Ulbrich-Hofmann, R. and Selisko, B. (1993),Enzyme Microb. Technol. 15, 33–41.CrossRefGoogle Scholar
  12. 12.
    Sumner, J. and Howell, S. (1935),J. Biol. Chem. 108, 51.Google Scholar
  13. 13.
    Combes, D. and Monsan, P. (1983),Carbohydr. Res. 117, 215–228.CrossRefGoogle Scholar
  14. 14.
    Bowshi, L., Saini, R., Ryu, D., and Vieth, W. (1971),Biotechnol. Bioeng. 1, 641–658.CrossRefGoogle Scholar
  15. 15.
    Nelson, J. and Maxwell, P. (1928),J. Am. Chem. Soc. 50, 2188–2193.CrossRefGoogle Scholar
  16. 16.
    Straatof, J., Kieboom, A., and Bekkum, H. (1986),Carbohydr. Res. 146, 154–159.CrossRefGoogle Scholar
  17. 17.
    Anderson, B., Thiensen, N., and Broe, P. (1969),Acta Chem. Scand. 23, 2367.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Maria Rodríguez
    • 1
  • Alfonso Gómez
    • 1
  • Fernando González
    • 1
  • Eduardo Barzana
    • 2
  • Agustin López-Munguía
    • 1
    • 2
  1. 1.Institute de BiotecnologiaUNAMMorelosMéxico
  2. 2.Facultad de QuimicaUNAM, Cd, UniversitariaD.F.México

Personalised recommendations