Journal d’Analyse Mathématique

, Volume 67, Issue 1, pp 281–306

On nonlinear Schrödinger equations, II.HS-solutions and unconditional well-posedness



We consider the nonlinear Schrödinger equation (NLS) (see below) with a general “potential”F(u), for which there are in general no conservation laws. The main assumption onF(u) is a growth rateO(|u|k) for large |u|, in addition to some smoothness depending on the problem considered. A uniqueness theorem is proved with minimal smoothness assumption onF andu, which is useful in eliminating the “auxiliary conditions” in many cases. A new local existence theorem forHS-solutions is proved using an auxiliary space of Lebesgue type (rather than Besov type); here the main assumption is thatk≤1+4/(m−2s) ifs<m/2,k<∞ ifs=m/2 (no assumption ifs>m/2). Moreover, a general existence theorem is proved for globalHS-solutions with small initial data, under the main additional condition thatF(u)=O(|u|1+4/m) for small |u|; in particularF(u) need not be (quasi-) homogeneous or in the critical case. The results are valid for alls≥0 ifm≤6; there are some restrictions ifm≥7 and ifF(u) isnot a polynomial inu and\(\bar u\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Bergh and J. Löfström,Interpolation Spaces, Springer, Berlin, 1976.MATHGoogle Scholar
  2. [2]
    H. Brezis,Remarks on the preceding paper by M. Ben-Artzi “Global solutions of two-dimensional Navier-Stokes and Euler equations”, Arch. Rational Mech. Anal.128 (1994), 359–360.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    T. Cazenave and F. B. Weissler,The Cauchy problem for the critical nonlinear Schrödinger equation in H S, Nonlinear Analysis14 (1990), 807–836.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    F. M. Christ and M. I. Weinstein,Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal.100 (1991), 87–109.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    R. R. Coifman and Y. Meyer,Nonlinear harmonic analysis, operator theory and P.D.E., Beijing Lectures in Harmonic Analysis, Princeton, 1986, pp. 3–45.Google Scholar
  6. [6]
    Y. Giga, T. Miyakawa and H. Osada,Two-dimensional Navier-Stokes flow with measures as initial velocity, Arch. Rational Mech. Anal.104 (1988), 223–250.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Ginibre and G. Velo,Théorie de la diffusion dans l'espace d'énergie pour une classe d'équations de Schrödinger non linéaires, C. R. Acad. Sci. Paris298 (1984), 137–141.MATHMathSciNetGoogle Scholar
  8. [8]
    J. Ginibre and G. Velo,The global Cauchy problem for the non linear Schrödinger equation revisited, Ann. Inst. Henri Poincaré, analyse non linéaire2 (1985), 309–327.MATHMathSciNetGoogle Scholar
  9. [9]
    A. Gulisashvili and M. A. Kon,Smoothness of Schrödinger semigroups and eigenfunctions, International Math. Res. Notices (1994), 193–199.Google Scholar
  10. [10]
    T. Kato,Strong L p solutions of the Navier-Stokes equation inm,with applications to weak solutions, Math. Z.187 (1984), 471–480.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    T. Kato,On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. théor.46 (1987), 113–129.MATHGoogle Scholar
  12. [12]
    T. Kato,Nonlinear Schrödinger equations, Lecture Notes in Physics, Vol. 345, Springer, Berlin, 1989, pp. 218–263.Google Scholar
  13. [13]
    G. Staffilani,The initial value problem for some dispersive differential equations, Dissertation, University of Chicago, 1995.Google Scholar
  14. [14]
    Y. Tsutsumi,L 2-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial Ekvac.30 (1987), 115–125.MATHMathSciNetGoogle Scholar
  15. [15]
    Y. Tsutsumi,Global strong solutions for nonlinear Schrödinger equations, Nonlinear Analysis11 (1987), 1143–1154.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1995

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations