Journal d’Analyse Mathématique

, Volume 67, Issue 1, pp 165–198

Bending formulae for convex hull boundaries

  • John R. Parker
  • Caroline Series
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. F. Beardon,The Geometry of Discrete Groups, Springer, Berlin, 1983.MATHGoogle Scholar
  2. [2]
    L. Bers,Uniformization, moduli and Kleinian groups, Bull. London Math. Soc.4 (1972), 257–300.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    J. L. Brenner,Quelques groupes libres de matrices, Comptes Rendus de l'Academic des Sciences, Paris241 (1955), 1689–1691.MATHMathSciNetGoogle Scholar
  4. [4]
    R. D. Canary, D. B. A. Epstein and P. Green,Notes on notes of Thurston, inAnalytic and Geometric Aspects of Hyperbolic Space (D. B. A. Epstein, ed.), London Math. Soc. Lecture Notes111, Cambridge University Press, 1987, pp. 3–92.Google Scholar
  5. [5]
    H. Cohn,An approach to Markoff's minimal forms through modular functions, Annals of Math.61 (1955), 1–12.CrossRefGoogle Scholar
  6. [6]
    D. B. A. Epstein and A. Marden,Convex hulls in hyperbolic space, a theorem of Sullivan and measured pleated surfaces, inAnalytic and Geometric Aspects of Hyperbolic Space (D. B. A. Epstein, ed.), London Math. Soc. Lecture Notes111, Cambridge University Press, 1987, pp. 112–253.Google Scholar
  7. [7]
    W. Fenchel,Elementary Geometry in Hyperbolic Space, de Gruyter, 1989.Google Scholar
  8. [8]
    C. D. Hodgson and S. P. Kerckhoff,Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery (to appear).Google Scholar
  9. [9]
    L. Keen, B. Maskit and C. Series,Geometric finiteness and uniqueness for Kleinian groups with circle packing limit sets, J. reine angew. Math.436 (1993), 209–219.MATHMathSciNetGoogle Scholar
  10. [10]
    L. Keen, J. R. Parker and C. Series,Pleating coordinates for the Maskit embedding of the Teichmüller space of the twice punctured torus (in preparation).Google Scholar
  11. [11]
    L. Keen and C. Series,Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology32 (1993), 719–749.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    L. Keen and C. Series,The Riley slice of Schottky space, Proc. London Math. Soc.69 (1994), 72–90.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    L. Keen and C. Series,Continuity of convex hull boundaries, Pacific J. Math.168 (1995), 183–206.MATHMathSciNetGoogle Scholar
  14. [14]
    L. Keen and C. Series,Non-singularity of pleating varieties in quasi-Fuchsian space (in preparation).Google Scholar
  15. [15]
    C. Kourouniotis,The geometry of bending quasi-Fuchsian groups, inDiscrete Groups and Geometry (W. J. Harvey and C. Maclachlan, eds.), London Math. Soc. Lecture Notes173, Cambridge University Press, 1992, pp. 148–164.Google Scholar
  16. [16]
    C. Kourouniotis,Complex length coordinates for quasi-Fuchsian groups, Mathematika41 (1994), 173–188.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Marden,The geometry of finitely generated Kleinian groups, Annals of Math.99 (1974), 383–462.CrossRefMathSciNetGoogle Scholar
  18. [18]
    B. Maskit,Parabolic elements in Kleinian groups, Annals of Math.117 (1983), 659–668.CrossRefMathSciNetGoogle Scholar
  19. [19]
    J.-P. Otal,Sur le coeur convexe d'une variété hyperbolique de dimension 3, Inventiones (to appear).Google Scholar
  20. [20]
    P. L. Waterman and S. Wolpert,Earthquakes and tessellations of Teichmüller space, Trans. Amer. Math. Soc.278 (1983), 157–167.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1995

Authors and Affiliations

  • John R. Parker
    • 1
  • Caroline Series
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryEngland
  2. 2.Department of mathematical SciencesUniversity of DurhamDurhamEngland

Personalised recommendations