Applied Biochemistry and Biotechnology

, Volume 75, Issue 2–3, pp 215–233 | Cite as

Improved biosensor for glucose based on glucose oxidase-immobilized silk fibroin membrane

  • Yu-Qing Zhang
  • Jiang Zhu
  • Ren-Ao Gu
Original Ariticle


Based on glucose oxidase-immobilized silk fibroin membrane and oxygen electrode, the authors have developed an amperometric glucose sensor in flow-injection analysis. After the sensor was improved by the configuration of oxygen electrode and a temperature control system was added to the electrode body, its sensitivity, analytical precision, and stability were enhanced greatly. The authors first introduced a tailing inhibitor-ion pair reagent into a buffer system in the biosensor so as to eliminate all interference from hemacyte, macromolecules, and small mol wt charged species besides electroactive specie ascorbate in complex matrices. A considerably serious tailing of the biosamples, such as whole blood, plasma, serum, or urine on the sensor, based on enzyme electrode, entirely disappeared, their response times were shortened, and base lines became more smooth and stable. The glucose sensor has a broad range of linear response for glucose (up to 25.0 mmol/L) and a good correlation (γ = 0.999) under conditions of control temperature 32.0°C and 1.6 mL/min 0.02 mol/L phosphate buffer containing 0.5% tailing inhibitor (v/v). Recoveries of glucose in these biosamples are within the range of 93.71–105.88%, and its repeatabilities for determining glucose, repeated 100 times, human blood dilution 125 times, and serum 128 times, are 1.81,2.48, and 2.91% (RSD), respectively. The correlation analysis for 200 serum samples showed that the correlation (γ) is 0.9934 between the glucose sensor and Worthington method for determining serum glucose used conventionally in a hospital laboratory. Moreover, the enzyme membrane used in the biosensor can be stored for a long time (over 2 yr) and measured repeatedly over 1000 times for biosamples. The glucose sensor is capable of detecting over 60 biosamples/hr.

Index entries

Glucose sensor glucose oxidase-immobilized fibroin membrane oxygen electrode immobilized enzyme flow-injection analysis ion pair reagent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miyairi, S., Sugiura, M., and Fukui, S., (1978),Agric. Biol. Chem. 42, 1661–1667.Google Scholar
  2. 2.
    Demura, M. and Asakura, T. (1989),Biotechnol. Bioeng. 33, 598–603.CrossRefGoogle Scholar
  3. 3.
    Demura, M., Asakura, T., Nakamura, E., and Tamura, H. (1989),J. Biotech. 10, 113–120.CrossRefGoogle Scholar
  4. 4.
    Demura, M., Xomura, T., Hiraide, H., and Asakura, T. (1990),SEN-I GAKKAISHI 46, 391–395.Google Scholar
  5. 5.
    Asakura, T., Yoshimizu, H., Kuzuhara, A., and Matsunaga, T. (1988),J. Seric. Sci. Jpn. 57, 203–209.Google Scholar
  6. 6.
    Asakura, T., Yoshimizu, H., and Kakizaki, M. (1990),Biotechnol. Bioeng. 35, 511–517.CrossRefGoogle Scholar
  7. 7.
    Demura, M., Komura, T., and Asakura, T. (1991),Bioelectrochem. Bioenerg. 26, 167–175.CrossRefGoogle Scholar
  8. 8.
    Zhang, Y.-Q. and Zhou, Y.-Z. (1995),J Suzhou Inst. Silk Textile Technol. (China) 15(2), 99–103.Google Scholar
  9. 9.
    Zhang, Y.-Q., Zhu, J., and Shen, W.-D. (1997),J. Suzhou Univ.,13(2), 118–125.Google Scholar
  10. 10.
    Zhang, Y.-Q., Zhu, J., Cao, P-G., and Gu, R.-A. (1998),Prog. Biochem. Biophys. (China),25(3), 275–278.Google Scholar
  11. 11.
    Zhang, Y.-Q., and Zhou, Y.-Z. (1995),Prog. Biochem. Biophys. (China) 22(2), 162–165.Google Scholar
  12. 12.
    Zhang, Y.-Q., and Gu, R.-A. (1998),Chemistry ofHong Kong, in review.Google Scholar
  13. 13.
    Stellmach, B. (1988),Bestimmungsmethoden Enzyme Chapter 15.Google Scholar
  14. 14.
    Janata, J., Josowitz, M., and De Vancy, D. M. (1994),Anal. Chem. 66, 207R-228R.CrossRefGoogle Scholar
  15. 15.
    Elekes, O., Moscone, D., Venema, K., and Korf, J. (1995),J. Clin. Chim. Acta 239, 153–165.CrossRefGoogle Scholar
  16. 16.
    Vadgama, P. M., Kelvin, G. B., and Mullen, W. (1985), EP patent No. 0 216 577 B1,Prority. Google Scholar
  17. 17.
    Updike, S. J. and Hicks, G. P. (1967),Nature 214, 986.CrossRefGoogle Scholar
  18. 18.
    Malinauskas, A. and Kulys, J. (1978),Anal. Chim. Acta 98, 31–37.CrossRefGoogle Scholar
  19. 19.
    Taylor, M. A., Jones, M. N., Vadgama, P. M., and Higson, S. P. J. (1995),Biosensors Bioelectronics 10, 251–260.CrossRefGoogle Scholar
  20. 20.
    Christiansen, T. F., and Jakobsen, K. M. (1995)Acta Anaesthesiol. Scand. 39:(Suppl),104, 31–35.CrossRefGoogle Scholar
  21. 21.
    Manowitz, P., Stoecher, P. W., and Yacynych, A. M. (1995),Biosensors Bioelectronics 10, 359–370.CrossRefGoogle Scholar
  22. 22.
    Zhang, Y.-Q., Shen, W.-D., Gu, R.-A., Zhu, J., Xue, R.-Y. (1998)Analyt. Chim. Acta 369, 123–128.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Yu-Qing Zhang
    • 1
  • Jiang Zhu
    • 1
  • Ren-Ao Gu
    • 1
  1. 1.Biotechnology CollegeSuzhou UniversityXushuguan, SuzhouP.R. China

Personalised recommendations