Israel Journal of Mathematics

, Volume 59, Issue 2, pp 150–166 | Cite as

Ruzsa’s problem on sets of recurrence

  • J. Bourgain
Article

Abstract

The main purpose of this paper is to prove the existence of Poincaré sequences of integers which are not van der Corput sets. This problem was considered in I. Ruzsa’s expository article [R1] (1982–83) on correlative and intersective sets. Thus the existence is shown of a positive non-continuous measureμ on the circle which Fourier transform vanishes on a set of recurrence, i.e.S={nZ;\(\hat \mu \)(n)=0} is a set of recurrence but not a van der Corput set. The method is constructive and involves some combinatorial considerations. In fact, we prove that the generic density condition for both properties are the same.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-M]
    A. Bertrand-Mathis,Ensembles intersectifs et récurrence de Poincaré, Isr. J. Math.55 (1986), 184–198.MATHMathSciNetGoogle Scholar
  2. [F]
    H. Furstenberg,Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, 1981.MATHGoogle Scholar
  3. [K-N]
    T. Kamae and M. Mendès France,Van der Corput’s difference theorem, Isr. J. Math.31 (1978), 335–342.MATHCrossRefGoogle Scholar
  4. [K1]
    Y. Katznelson,Sequences of integers dense in the Bohr group, Proc. Royal Inst. Techn. Stockholm 76–86 (1973).Google Scholar
  5. [K2]
    Y. Katznelson,Suites aléatoires d’entiers, Lecture Notes in Math.336, Springer-Verlag, Berlin, 1973, pp. 148–152.Google Scholar
  6. [L-R]
    J. Lopez and K. Ross,Sidon sets, Lecture notes in Pure and Applied Math., No. 13, M. Dekker, New York, 1975.MATHGoogle Scholar
  7. [P]
    Y. Peres, Master Thesis.Google Scholar
  8. [R1]
    I. Ruzsa,Ensembles intersectifs, Séminaire de Théorie des Nombres de Bordeaux, 1982–83.Google Scholar
  9. [R2]
    I. Ruzsa,On difference sets, Stud. Sci. Math. Hung.13 (1978), 319–326.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1987

Authors and Affiliations

  • J. Bourgain
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations