Advertisement

Lettere al Nuovo Cimento (1971-1985)

, Volume 38, Issue 15, pp 509–521 | Cite as

Lie-isotopic lifting of unitary symmetries and of Wigner’s theorem for extended, deformable particles

  • R. M. Santilli
Article

Summary

As is well known, the notions of symmetries and Wigner's theorem constitute some of the ultimate foundations of quantum mechanics. Nevertheless, the theory is crucially dependent on the simplest possible realization of Lie's theory, that via unitary linear or antilinear operators, which is characterized by enveloping associative algebras ℰ of operatorsA, B … with trivial associative productAB. A series of recent, mathematical and physical studies have established the existence of the Lie-isotopic reformulation of Lie's theory, which is based on enveloping algebrasE that are still associative, yet are realized via the less trivial associative-isotopic productA*B=AgB, whereg is a suitable, fixed, operator. Furthermore, it has been proved that the Lieisotopic theory can be consistently formulated on a Hilbert space, by providing realistic possibilities of achieving a generalization of quantum mechanics known under the name of «hadronic mechanics». In this paper, we present the notion of Lie-isotopic lifting of unitary linear and antilinear symmetries and of Wigner's theorem within the context of (the closed-exterior branch of) hadronic mechanics. The results are applied to the isotopic lifting of the operator formulation of the rotational symmetry. It is shown that the generalized symmetry can provide the invariance of all possible ellipsoidical deformations of spherical particles. This confirms the general lines of hadronic mechanics conjectured earlier, that space-time (and other) symmetries can be exact for extended particles, provided that they are expressed in a structurally more general way (isotopic-unitary) while the same symmetries can be violated when expressed via the simplest possible (unitary) realizations for pointlike approximations.

PACS. 03.65

Quantum theory quantum mechanics 

PACS. 11.30

Symmetry and conservation laws 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

|o

  1. (1).
    H. Weyl:Gruppentheorie und Quantenmechanik (Leipzig, 1928).Google Scholar
  2. (2).
    J. von Heumann:Grundlagen der Quantenmechanik (Berlin, 1931).Google Scholar
  3. (3).
    E. P. Wigner:Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, (New York, N. Y., 1959).Google Scholar
  4. (4).
    For additional early treatments of Wigner's theorem, see.,e.g.,U. Uhlhorn:Ark. Fys.,23, 307 (1962) andV. Bargmann:J. Math. Phys. (N. Y.) 5, 862 (1964). For more recent treatments, see,e.g.,L. Fonda andG. C. Ghirardi:Symmetry Principles in Quantum Physics (New York, N. Y., 1970).Google Scholar
  5. (5).
    The notion ofisotopy of Abstract Algebras is rather old, and dates back to the early stages of set theory,e.g., via the so-called Latin Squares (seeR. H. Bruck:A Survey of Binary Systems (Berlin, 1958)).Google Scholar
  6. (6).
    R. M. Santilli:Hadronic J.,1, 223 (1978) (see alsoPhys. Rev. D 20, 555 (1979)).MathSciNetMATHGoogle Scholar
  7. (7).
    R. M. Santilli:Foundations of Theoretical Mechanics, II:Birkhoffican Generalization of Hamiltonian Mechanics (New York, N. Y., 1982).Google Scholar
  8. (8).
    R. M. Santilli:Lie-admissible Approach to Hadronic Structure, II:Coverings of the Galilei and Einstein Relativities? (Nonantum, Mass., 1982).Google Scholar
  9. (9).
    R. M. Santilli:Lie-isotopic lifting of Lie symmetries, I:General Considerations, I.B.R. Preprint DE-83-2 (1983), submitted for publication.Google Scholar
  10. (10).
    R. M. Santilli:Lie-isotopic lifting of Lie symmetries, II:Lifting of Rotations, I.B.R. Preprint DE-83-3 (1983), submitted for publication.Google Scholar
  11. (11).
    R. M. Santilli:Lett. Nuovo Cimento,37, 545 (1983).MathSciNetADSCrossRefGoogle Scholar
  12. (12).
    M. Gasperini:Lie-isotopic lifting of gauge theories, University of Bologna preprint, inHadronic J. (in press).Google Scholar
  13. (13).
    Proceedings of the Second Workshop on Lie-admissible Formulations, VolumeA: Review Papers, Hadronic J.,2, 1252 (1979); VolumeB: Research papers, Hadronic J.,3, 1 (1979);Proceedings of the Third Workshop on Lie-admissible Formulations, VolumeA: Mathematics, Hadronic J.,4, 183 (1981); VolumeB: Theoretical Physics, Hadronic J.,4, 608 (1981); VolumeC: Experimental Physics and Bibliography, Hadronic J.,4, 1166 (1981);Proceedings of the First International Conference on Nonpotential Interactions and Their Lie-admissible Treatment, Vol.A: Invited papers, Hadronic J.,5, 245 (1982); Vol.B: Invited papers, Hadronic J.,5, 679 (1982); Vol.C: Contributed papers, Hadronic J.,5, 1194 (1982); and Vol.D: Contributed papers, Hadronic J.,5, 1627 (1982).Google Scholar
  14. (14).
    M. L. Tomber et al.:Hadronic J.,3, 507 (1979);4, 1318 (1981) and4, 1444 (1981).MathSciNetMATHGoogle Scholar
  15. (15).
    G. Benkart, J. M. Osborn andD. J. Britten:Hadronic J.,4, 497 (1981).MathSciNetMATHGoogle Scholar
  16. (16).
    H. C. Myung:Hadronic J.,5, 771 (1982).MathSciNetMATHGoogle Scholar
  17. (17).
    J. M. Osborn:Hadronic J.,5, 904 (1982).MathSciNetMATHGoogle Scholar
  18. (18).
    A. A. Sagle:Hadronic J.,5, 1546 (1982).MathSciNetMATHGoogle Scholar
  19. (20).
    R. M. Santilli:Hadronic J.,1, 574 (1978).MathSciNetGoogle Scholar
  20. (21).
    R. M. Santilli:Hadronic. J.,4, 642 (1981).Google Scholar
  21. (22).
    G. Eder:Hadronic J.,4, 2018 (1981).MathSciNetGoogle Scholar
  22. (23).
    R. Mignani:Hadronic J.,5, 1120 (1982).MathSciNetGoogle Scholar
  23. (24).
    A. Jannussis, G. Brodimas, D. Sourlas, A. Streclas, P. Siafaricas, L. Papalooucas andN. Tsangas:Hadronic J.,5, 1923 (1982).MATHGoogle Scholar
  24. (25).
    H. C. Myung andR. M. Santilli:Hadronic J.,5, 1277 (1982).MathSciNetGoogle Scholar
  25. (26).
    H. C. Myung andR. M. Santilli:Hadronic J.,5, 1377 (1982).Google Scholar
  26. (28).
    A. Kalnay andR. M. Santilli: in preparation for ref. (29),Google Scholar
  27. (29).
    J. Fronteau et al., Editors,Proceedings of the First Workshop on Hadronic Mechanics, Hadronic J., Vol.6 (1983), to appear.Google Scholar
  28. (30).
    R. M. Santilli:Hadronic J.,3, 440 (1979).MathSciNetMATHGoogle Scholar
  29. (31).
    P. Caldirola:Dissipation in quantum theory (40 years of research, University of Milano preprint, invited paper for Proceedings (29) (see also the contribution in the same Proceedings byR. Bonifacio).Google Scholar
  30. (32).
    R. M. Santilli:Hadronic J.,2, 1460 (1979), p. 1820.MathSciNetGoogle Scholar
  31. (33).
    A. Jannussis, G. Brodimas, V. Papatheou andH. Ioannidou:Lett. Nuovo Cimento,38, 181 (1983). and invited paper in Proceedings (29).MathSciNetCrossRefGoogle Scholar
  32. (34).
    R. Mignani:Lett. Nuovo Cimento,38, 169 (1983).MathSciNetCrossRefGoogle Scholar
  33. (35).
    H. Rauch:Hadronic J.,5, 729 (1982).Google Scholar
  34. (36).
    R. M. Santilli:Lett Nuovo Cimento. 37, 337, (1983).MathSciNetCrossRefGoogle Scholar
  35. (37).
    P. A. M. Dirac:Proc. R. Soc. London, Ser. A,189, 1 (1942);W. Pauli:Rev. Mod. Phys.,15, 175 (1943);N. Shono andN. Oda:Progr. Theor. Phys.,4, 358 (1949);S. N. Gupta:Proc. Phys. Soc. London, Ser. A,63, 681 (1950);K. Bleuler:Helv. Phys. Acta,23, 567 (1950), and others.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1983

Authors and Affiliations

  • R. M. Santilli
    • 1
  1. 1.The Institute for Basic ResearchCambridge

Personalised recommendations