Advertisement

Journal d’Analyse Mathématique

, Volume 8, Issue 1, pp 1–157 | Cite as

On certain determinants whose elements are orthogonal polynomials

  • S. Karlin
  • G. Szegö
Article

Keywords

Orthogonal Polynomial Legendre Polynomial Hermite Polynomial Jacobi Polynomial Simple Zero 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    W. N. Bailey, On two manuscripts by Bishop Barnes,Quarterly Journal of Mathematics, Vol. 10, 1959, pp. 236–240.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Bateman Manuscript Project (Director: A. Erdélyi),Higher transcendental functions, Vols 1, and 2, New York-Toronto-London 1953.Google Scholar
  3. [3]
    E. F. Beckenbach, W. Seidel and O. Szász, Recurrent determinants of Legendre and of ultraspherical polynomials,Duke Mathematical Journal, Vol. 18, 1951, pp. 1–10.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. E. Forsythe, Second order determinants of Legendre polynomials,Duke Mathematical Journal, Vol. 18, 1951, pp. 361–371.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    F. R. Gantmacher, Matrix Theory (Translation from the Russian),Chelsea Publishing Company, Vol. 1, 1959.Google Scholar
  6. [6]
    W. Hahn, Ueber orthogonale polynome, dieq-Differenzengleichungen genügen,Mathematische Nachrichten, Vol. 2, 1949, pp. 4–34.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. Karlin and J. L. McGregor, The differential equations of birth-and death processes, and the Stieltjes moment problem,Transactions of the American Mathematical Society, Vol. 85, 1957, pp. 489–546.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. Karlin and J. L. McGregor, Coincidence properties of birth and death processes,Pacific Journal of Mathematics, Vol. 9, 1959, pp. 1109–1140.zbMATHMathSciNetGoogle Scholar
  9. [9]
    E. Mohr, Einfacher Beweis des verallgemeinerten Determinantensatzes von Sylvester nebst einer Verschärfung,Mathematische Nachrichten, Vol. 10, 1953, pp. 257–260,zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    G. Pólya and I. Schur, Ueber zwei Atten von Faktorenfolgen in der Theorie der algebraischen Gleichungen,Journal fuer die reine und angewandte Mathematik, Vol. 144, 1914, pp. 89–113.zbMATHGoogle Scholar
  11. [11]
    G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Vols. 1 and 2, Berlin, 1925.Google Scholar
  12. [12]
    O. Szász, Inequalities concerning ultraspherical polynomials and Bessel functions,Proceedings of the American Mathematical Society, Vol. 1, 1950, pp. 256–267.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    G. Szegö, Orthogonal polynomials,American Mathematical Society, Colloquium Publications, Vol. 23, second edition, New York 1959.Google Scholar
  14. [14]
    G. Szegö, On an inequality of P. Turán concerning Legendre polynomials,Bulletin of the American Mathematical Society, Vol. 54, 1948, pp. 401–405.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Weber and A. Erdélyi, On the finite difference analogue of Rodrigues formula,American Mathematical Monthly, Vol. 59, 1952, pp. 163–168.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1960

Authors and Affiliations

  • S. Karlin
    • 1
  • G. Szegö
    • 1
  1. 1.Stanford UniversityStanfordU.S.A.

Personalised recommendations