Journal d’Analyse Mathématique

, Volume 86, Issue 1, pp 93–104 | Cite as

A generalization of the intermediate factors theorem

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    S. Adams,Boundary amenability for hyperbolic groups and an application to smooth dynamics of simple groups. Topology33 (1994), 765–783.MATHCrossRefMathSciNetGoogle Scholar
  2. [F1]
    H. Furstenberg,A Poisson formula for semi-simple Lie groups, Ann. of Math.77 (1963), 335–386.CrossRefMathSciNetGoogle Scholar
  3. [F2]
    H. Furstenberg,Non-commuting random products, Trans. Amer. Math. Soc.108 (1963), 377–428.MATHCrossRefMathSciNetGoogle Scholar
  4. [F3]
    H. Furstenberg,Rigidity and cocycles for ergodic actions of semisimple Lie groups, Séminare Bourbaki, 32e année, 1979/80, no. 559.Google Scholar
  5. [M4]
    G. A. Margulis,Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin, 1991.MATHGoogle Scholar
  6. [NZ1]
    A. Nevo and R. J. Zimmer,Homogenous projective factors for actions of semisimple Lie groups, Invent. Math.138 (1999), 229–252.MATHCrossRefMathSciNetGoogle Scholar
  7. [NZ2]
    A. Nevo and R. J. Zimmer,Rigidity of Furstenberg entropy for semisimple Lie group actions, Ann. Sci. École Norm. Sup.33 (2000), 321–343.MATHMathSciNetGoogle Scholar
  8. [NZ3]
    A. Nevo and R. J. Zimmer,A structure theorem for actions of semisimple Lie groups, Ann. of Math., to appear.Google Scholar
  9. [NZ4]
    A. Nevo and R. J. Zimmer,A proof of the intermediate factors theorem, preprint, 1998.Google Scholar
  10. [Sp-Z]
    R. Spatzier and R. J. Zimmer,Fundamental groups of negatively curved manifolds and actions of semisimple groups, Topology30 (1991), 591–601.MATHCrossRefMathSciNetGoogle Scholar
  11. [St-Z]
    G. Stuck and R. J. Zimmer,Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math.139 (1994), 723–747.MATHCrossRefMathSciNetGoogle Scholar
  12. [V]
    V. S. Varadarajan,Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc.109 (1963), 191–220.MATHCrossRefMathSciNetGoogle Scholar
  13. [Z1]
    R. J. Zimmer,Ergodic theory, semi-simple Lie groups, and foliations by manifolds of negative curvature, Publ. Math. I.H.E.S.55 (1982), 37–62.MATHMathSciNetGoogle Scholar
  14. [Z2]
    R. J. Zimmer,Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984.MATHGoogle Scholar
  15. [Z3]
    R. J. Zimmer,Induced and amenable actions of Lie groups, Ann. Sci. École Norm. Sup.11 (1978), 407–428.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2002

Authors and Affiliations

  1. 1.Department of MathematicsTechnion-Israel Institute of TechnologyHaifIsrael
  2. 2.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations