Advertisement

Immunologic Research

, Volume 19, Issue 2–3, pp 127–141 | Cite as

Function and regulation of memory CD4 T cells

  • Daniela P. Metz
  • Kim Bottomly
Article

Abstract

The development of peripheral naive CD4 T cells is dependent on the success of positive selection of immature T cells in the thymus. Only thymocytes that express a T cell receptor (TCR) capable of recognizing self-MHC with low affinity are selected for survival and differentiation into mature naive T cells. Although the TCR of naive T cells has to maintain self-tolerance, it also propagates naive CD4 T cell proliferation on recognition of appropriate foreign peptide associated with MHC class II on antigen-presenting cells (APCs). Naive CD4 T cells that successfully engage foreign peptide undergo further differentiation that leads to the maturation of a select few into the memory T cell pool. Although the requirements that lead to memory T cell development are currently not known, functional changes have been described that are thought to be associated with the greater efficiency with which memory T cells respond to antigen. This article will discuss differences associated with signaling through the TCR of naive and memory CD4 T cells and describe unique control mechanisms imposed on memory CD4 T cells that are likely to have arisen to counterbalance the altered TCR signaling.

Keywords

Naive Memory CD4 T cells Costimulation CD28 CTLA-4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murphy KM, Heimberger AB, Loh DY: Induction by antigen of intrathymic apoptosis of CD4/ CD8/TCR-lo thymocytes in vivo. Science 1990;250:1720–1723.PubMedCrossRefGoogle Scholar
  2. 2.
    Sebzda E, Wallace VA, Mayer J, Yeung RSM, Mak TW, Ohashi PS: Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science 1994;263:1615–1618.PubMedCrossRefGoogle Scholar
  3. 3.
    von Boehmer H: The selection of the alpha-beta heterodimeric T cell receptor for antigen. Immunol Today 1986;7:333–336.CrossRefGoogle Scholar
  4. 4.
    Kirberg J, Berns A, von Boehmer H: Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J Exp Med 1997; 186:1269–1275.PubMedCrossRefGoogle Scholar
  5. 5.
    Takeda S, Rodewald H-R, Arakawa H, Bluethmann H, Shimizu T: MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their longterm life span. Immunity 1996; 5:217–228.PubMedCrossRefGoogle Scholar
  6. 6.
    Sebzda E, Kundig TM, Thompson CT, Aoki K, Mak SY, Mayer JP, et al.: Mature T cell reactivity altered by peptide agonist that induces positive selection. J Exp Med 1996;183:1093–1104.PubMedCrossRefGoogle Scholar
  7. 7.
    Hogquist KA, Tomlinson AJ, Kieper WC, McGargill MA, Hart MC, Naylor S, et al.: Identification of a naturally occuring ligand forthymic positive selection. Immunity 1997;6:389–399.PubMedCrossRefGoogle Scholar
  8. 8.
    Yagi J, Janeway CA: Ligand thresholds at different stages of T cell development. Int Immunol 1990; 2:83–88.PubMedCrossRefGoogle Scholar
  9. 9.
    Vasquez NJ, Kaye J, Hedrick SM: In vivo and in vitro clonal deletion of double-positive thymocytes. J Exp Med 1992; 175:1307–1316.PubMedCrossRefGoogle Scholar
  10. 10.
    Davey GM, Schober SL, Endrizzi BT, Dutcher AK, Jameson SC, Hogquist KA: Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J Exp Med 1998; 188:1867–1874.PubMedCrossRefGoogle Scholar
  11. 11.
    Barthlott T, Wright RJ, Stockinger B: Normal thymic selection of TCR transgenic CD4 T cells, but impaired survival in the periphery despite the presence of selecting MHC molecules. J Immunol 1998; 161:3992–3999.PubMedGoogle Scholar
  12. 12.
    Shahinian A, Pfeffer K, Lee KP, Kundig TM, Kishihara K, Wakeham A, et al.: Differential T cell costimulatory requirements in CD28-deficient mice. Science 1993;261:609–612.PubMedCrossRefGoogle Scholar
  13. 13.
    Linsley P, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA: Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med 1991;173:721–730.PubMedCrossRefGoogle Scholar
  14. 14.
    Koulova L, Clark EA, Shu G, Dupont B: The CD28 Ligand B7/ BB1 provides costimulatory signal for alloactivation of CD4+ T cells. J Exp Med 1991;173:759–762.PubMedCrossRefGoogle Scholar
  15. 15.
    Linsley PS, Ledbetter JA: The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993;11:191–212.PubMedGoogle Scholar
  16. 16.
    Swain SL, Croft M, Dubey C, Haynes L, Rogers P, Zhang X, et al.: From naive to memory T cells. Immunol Rev 1996; 150:143–167.PubMedCrossRefGoogle Scholar
  17. 17.
    Farber DL: Cutting Edge commentary: Differential TCR signaling and the generation of memory T cells. J Immunol 1998; 160:535–539.PubMedGoogle Scholar
  18. 18.
    Byrne JA, Butler JL, Cooper MD: Differential activation requirements for virgin and memory T cells. J Immunol 1988;141: 3249–3257.PubMedGoogle Scholar
  19. 19.
    Byrne JA, Butler JL, Reinherz EL, Cooper MD: Virgin and memory T cells have different requirements for activation via the CD2 molecule. Int Immunol 1989; 1:29–35.PubMedCrossRefGoogle Scholar
  20. 20.
    Pihlgren M, Dubois PM, Tom-kowiak M, Sjogren T, Marvel J: Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J Exp Med 1996; 184:2141–2151.PubMedCrossRefGoogle Scholar
  21. 21.
    Bradley LM, Duncan DD, Yos-himoto K, Swain SL: Memory effectors: A potent, IL-4-secreting helper T cell population that develops in vivo after restimulation with antigen. J Immunol 1993;150: 3119–3130.PubMedGoogle Scholar
  22. 22.
    Farber DL, Acuto O, Bottomly K: Differential T cell receptor-mediated signaling in naive and memory CD4 T cells. Eur J Immunol 1997; 27:2094–2101.PubMedCrossRefGoogle Scholar
  23. 23.
    McHeyzer-Williams M, Altman JD, Davis MM: Enumeration and characterization of memory cells in the TH compartment. Immunol Rev 1996;150:5–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Lin MY, Welsh RM: Stability and diversity of T cell receptor repertoire usage during lymphocytic choriomeningitis virus infection of mice. J Exp Med 1998;188: 1993–2005.PubMedCrossRefGoogle Scholar
  25. 25.
    Janeway CA: The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu Rev Immunol 1992;10:645–674.PubMedGoogle Scholar
  26. 26.
    Thomas ML: The leukocyte common antigen family. Annu Rev Immunol 1989;7:339–369.PubMedCrossRefGoogle Scholar
  27. 27.
    Dianzani U, Luqman M, Rojo J, Yagi J, Baron JL, Woods A, et al.: Molecular associations on the T cell surface correlate with immunological memory. Eur J Immunol 1990;20:2249–2257.PubMedCrossRefGoogle Scholar
  28. 28.
    Sanders ME, Makgoba MW, Shar-row SO, Stephany D, Springer TA, Young HA, et al.: Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2 and LFA-1) and three other molecules (UCHL-1, CDw29 and Pgp-1) and have enhanced INF-γ production. J Immunol 1988;140:1401–1407.PubMedGoogle Scholar
  29. 29.
    Beverley PCL: Functional analysis of human T cell subsets defined by CD45 isoform expression. Semin Immunol 1992;4:35–41.PubMedGoogle Scholar
  30. 30.
    Janeway CAJ: The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu Rev Immunol 1992;10:645–674.PubMedGoogle Scholar
  31. 31.
    Mustelin T, Altman A: Dephosphorylation and activation of the T cell tyrosine kinase pp56lck by the leukocyte common antigen (CD45). Oncogene 1990;5:809–813.PubMedGoogle Scholar
  32. 32.
    Biffen M, McMichael-Phillips D, Larson T, Venkitaraman A, Alexander D: The CD45 tyrosine phosphatase regulates specific pools of antigen receptor-associated p59 fyn and CD4-associated p56 lck tyrosine kinases in human T-cells. EMBO J 1994; 13:1920–1929.PubMedGoogle Scholar
  33. 33.
    Okumura M, Thomas ML: Regulation of immune function by protein tyrosine phosphatase. Curr Opinion Immunol 1995;7:312–319.CrossRefGoogle Scholar
  34. 34.
    Leitenberg D, Novak TJ, Farber D, Smith BR, Bottomly K: The extracellular domain of CD45 controls association with the CD4-T cell receptor complex and the response to antigen-specific stimulation. J Exp Med 1996; 183:249–259.PubMedCrossRefGoogle Scholar
  35. 35.
    Novak T, Farber D, Cheol Hong S, Johnson P, Bottomly K: Isoforms of the transmembrane tyrosine phosphatase CD45 differentially affect T cell recognition. Immunity 1994;1:109–119.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhou Q, WuY, Nielsen PJ, Liu Y: Homotypic interaction of the heatstable antigen is not responsible for its co-stimulatory activity for T cell clonal expansion. Eur J Immunol 1997;27:2525–2528.CrossRefGoogle Scholar
  37. 37.
    Gray D:Immunological memory. Annu Rev Immunol 1993;11: 49–77.PubMedCrossRefGoogle Scholar
  38. 38.
    MacKay CR, Marston WL, Dudler L: Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med 1990; 171:801–811.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee WT, Vitetta ES: Memory T cells are anergic to the superantigen staphylococcal enterotoxin B J Exp Med 1992;176: 575–579.CrossRefGoogle Scholar
  40. 40.
    Miller RA, Flurkey K, Molloy M, Luby T, Stadecker MJ: Differential sensitivity of virgin and memory T lymphocytes to calcium ionophores suggests a buoyant density separation method and a model for memory cell hyporesponsiveness to Con A J Immunol 1991;147: 3080–3086.Google Scholar
  41. 41.
    Farber DL, Luqman M, Acuto O, Bottomly K: Control of memory CD4 T cell activation: MHC class II molecules on APCs and CD4 ligation inhibit memory but not naive CD4 T cells. Immunity 1995; 2:249–259.PubMedCrossRefGoogle Scholar
  42. 42.
    Bottomly K, Luqman M, Green-baum L, Carding S, West J, Pas-qualini T, et al.: A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines. Eur J Immunol 1989;19:617–623.PubMedCrossRefGoogle Scholar
  43. 43.
    Newell MK, Haughn LJ, Maroun CR, Julius MH: Death of mature T cells by separate ligation of CD4 and the T cell receptor for antigen. Nature 1990;347:286–288.PubMedCrossRefGoogle Scholar
  44. 44.
    Madrenas J, Chau LA, Smith J, Bluestone JA, Germain RN: The efficiency of CD4 recruitment to ligand-engaged TCR controls the agonist/partial agonist properties of peptide-MHC molecule ligands. J Exp Med 1997;185:219–229.PubMedCrossRefGoogle Scholar
  45. 45.
    Doyle C, Strominger JL: Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 1987;330:256–259.PubMedCrossRefGoogle Scholar
  46. 46.
    Mazerolles F, Hauss P, Barbat C, Figdor CG, Fischer A: Regulation of LFA-1-mediated T cell adhesion by CD4. Eur J Immunol 1991; 21:887–894.PubMedCrossRefGoogle Scholar
  47. 47.
    Mazerolles F, Auffray C, Fischer A: Down regulation of T-cell adhesion by CD4. Hum Immunol 1991; 31:40–46.PubMedCrossRefGoogle Scholar
  48. 48.
    Wolff CHJ, Hong S-C, Von Gra-fenstein H, Janeway CA, Jr.: TCRCD4 and TCR-TCR interactions as distinctive mechanisms for the induction of increased intracellular calcium in T-cell signalling. J Immunol 1993; 151:1337–1345.PubMedGoogle Scholar
  49. 49.
    Julius M, Maroun CR, Haughn L: Distinct roles for CD4 and CD8 as co-receptors in antigen receptor signalling. Immunol Today 1993; 14:177–183.PubMedCrossRefGoogle Scholar
  50. 50.
    Fowell DJ, Magram J, Turck CW, Killeen N, Locksley RM: Impaired Th2 subset development in the absence of CD4. Immunity 1997; 6:559–569.PubMedCrossRefGoogle Scholar
  51. 51.
    Brown DR, Moskowitz NH, Killeen N, Reiner SL: A role for CD4 in peripheral T cell differentiation. J Exp Med 1997;186:101–107.PubMedCrossRefGoogle Scholar
  52. 52.
    Leitenberg D, Boutin Y, Constant S, Bottomly K: CD4 regulation of TCR signaling and T cell differentiation following stimulation with peptides of different affinities for the TCR J Immunol 1998; 161: 1194–1203.PubMedGoogle Scholar
  53. 53.
    Metz DP, Farber DL, Konig R, Bottomly K: Regulation of memory CD4 T cell adhesion by CD4-MHC class II interaction. J Immunol 1997; 159:2567–2573.PubMedGoogle Scholar
  54. 54.
    Lecomte O, Fischer A: Antigenindependent adhesion of CD45RA (naive) and CD45RO (memory) CD4 T cells to B cells. Int Immunol 1991;4:191–196.CrossRefGoogle Scholar
  55. 55.
    Marsh EW, Dalke DP, Pierce SK: Biochemical evidence for the rapid assembly and disassembly of processed antigen-major histocompatibility complex class II complexes in acidic vesicles of B cells. J Exp Med 1992;175:425–436.PubMedCrossRefGoogle Scholar
  56. 56.
    Lub M, Van Kooyk Y, Figdor CG: Ins and outs of LFA-1. Immunol Today 1995; 16:459–503.CrossRefGoogle Scholar
  57. 57.
    Geppert TD, Lipsky PE: Association of various T cell-surface molecules with the cytoskeleton. J Immunol 1991;146:3298–3305.PubMedGoogle Scholar
  58. 58.
    Lee JK, Black JD, Repasky EA, Kubo RT, Bankert RB: Activation induces a rapid reorganization of spectrin in lymphocytes. Cell 1988;55:807–816.PubMedCrossRefGoogle Scholar
  59. 59.
    Valitutti S, Dessing M, Aktories K, Gallati H, Lanzavecchia A: Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J Exp Med 1995;181:577–584.PubMedCrossRefGoogle Scholar
  60. 60.
    Sloan-Lancaster J, Allen PM: Altered peptide ligand-induced partial T cell activation: molecular mechansims and role in T cell biology. Annu Rev Immunol 1996; 14:1–27.PubMedCrossRefGoogle Scholar
  61. 61.
    Bluestone JA: New perspectives of CD28-B7-mediated T cell costimulation. Immunity 1995;2:555–559.PubMedCrossRefGoogle Scholar
  62. 62.
    Chamber CA, Allison JP: Costimulation in T cell responses. Curr Opinion Immunol 1997;9:396–404.CrossRefGoogle Scholar
  63. 63.
    Lenschow DJ, Walunas TL, Blue-stone JA: CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996; 14:233–258.PubMedCrossRefGoogle Scholar
  64. 64.
    Croft M, Bradley LM, Swain SL: Naive versus memory CD4 T cell response to antigen. J Immunol 1994;152:2675–2684.PubMedGoogle Scholar
  65. 65.
    Luqman M, Bottomly K: Activation requirements for CD4+ T cells differing in CD45R expression. J Immunol 1992;149:2300–2306.PubMedGoogle Scholar
  66. 66.
    Gause WC, Lu P, Zhou X, Chen S, Madden KB, Morris SC, et al.: H polygyrus: B7-independence of the secondary type 2 response. Exp Parasitol 1996; 84:264–273.PubMedCrossRefGoogle Scholar
  67. 67.
    Lu P, Zhou X, Chen S, Moorman M, Schoneveld A, Morris S, et al.: Requirement of CTLA-4 counter receptors for IL-4 but not IL-10 elevation during a primary systemic in vivo immune response. J Immunol 1995;154:1078–1087.PubMedGoogle Scholar
  68. 68.
    Keane-Myers A, Gause WC, Linsley PS, Chen S-J, Wills-Karp M: B7-CD28/CTLA-4 costimulatory pathways are required for the development of T helper cell 2-mediated allergic airway responses to inhaled antigen. J Immunol 1997; 158:2042–2049.PubMedGoogle Scholar
  69. 69.
    Chambers CA, Krummel MF, Boi-tel B, Hurwitz A, Sullivan TJ, Fournier S, et al.: The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol Rev 1996; 153:27–46.PubMedCrossRefGoogle Scholar
  70. 70.
    Metz DP, Farber DL, Taylor T, Bottomly K: Differential role of CTLA-4 in regulation of resting memory versus naive CD4 T cell activation. J Immunol 1998; 161:5855–5861.PubMedGoogle Scholar
  71. 71.
    Waterhouse P, Marengere LEM, Mittruecker H-W, Mak TW: CTLA-4, a negative regulator of T-lymphocyte activation. Immunol Rev 1996; 153: 183–207.PubMedCrossRefGoogle Scholar
  72. 72.
    Thompson CB, Allison JP: The emerging role of CTLA-4 as an immune attenuator. Immunity 1997;7:445–450.PubMedCrossRefGoogle Scholar
  73. 73.
    Van der Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ: CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med 1997; 185:393–403.PubMedCrossRefGoogle Scholar
  74. 74.
    Bradshaw JD, Lu P, Leytze G, Rodgers J, Schieven GL, Bennett KL, et al.: Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrin-associated protein is negatively regulated by tyrosine phophorylation. Biochem 1997; 36:15975–15982.CrossRefGoogle Scholar
  75. 75.
    Marengere LEM, Waterhouse P, Duncan GS, Mittruecker H-W, Feng G-S, Mak TW: Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 1996; 272:1170–1173.PubMedCrossRefGoogle Scholar
  76. 76.
    Lalvani A, Brookes R, Hambleton S, Britton WJ, Hill AVS, McMichael AJ: Rapid effector function in CD8 memory T cells. J Exp Med 1997; 186:859–865.PubMedCrossRefGoogle Scholar
  77. 77.
    Chamber CA, Sullivan TJ, Allison JP: Lymphoproliferation in CTLA4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 1997;7:885–895.CrossRefGoogle Scholar
  78. 78.
    Konig R, Shen X, Germain RN: Involvement of both MHC class II α and Β chains in CD4 function indicate a role for ordered oligomerization in T cell activation. J Exp Med 1995;182:779–787.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Daniela P. Metz
    • 1
  • Kim Bottomly
    • 1
    • 2
  1. 1.Section of ImmunobiologyYale Medical SchoolNew Haven
  2. 2.Yale Medical SchoolNew HavenUSA

Personalised recommendations