Immunologic Research

, Volume 19, Issue 2–3, pp 107–118 | Cite as

The role of self-recognition in receptor repertoire development



The role of self-antigen recognition in the development of T and B cells of the adaptive immune system has been studied in several different ways. We have shown that CD4 T cells are selected on selfpeptide:self-MHC class II ligands, and in the periphery, they are sustained by contact with the same or similar ligands. We have also observed that B cells are positively selected on unknown and presumed self-ligands. We have used this information to explore autoimmune diseases as well. Finally, we have recently identified the innate immune system as playing a crucial role in regulating expression of costimulatory molecules that are required for induction of adaptive immune responses.


Self-recognition T cell receptor B cell receptor Receptor repertoire Idiotype Autoimmune disease Innate immunity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu Y, Janeway CA, Jr.:Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T cells. Proc Natl Acad Sci USA 1992;89: 3845–3849.PubMedCrossRefGoogle Scholar
  2. 2.
    Lemaitre B, et al.: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86: 973–983.PubMedCrossRefGoogle Scholar
  3. 3.
    Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr.: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [see comments]. Nature 1997;388:6640:394–397.PubMedCrossRefGoogle Scholar
  4. 4.
    Medzhitov R, et al.: MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998;2:253–258.PubMedCrossRefGoogle Scholar
  5. 5.
    Medzhitov R, Janeway CA, Jr.: Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997;91:295–298.PubMedCrossRefGoogle Scholar
  6. 6.
    Sant’ Angelo DB, et al.: The specificity and orientation of a TCR to its peptide-MHC class II ligands. Immunity 1996;4:367–376.CrossRefGoogle Scholar
  7. 7.
    Sant’ Angelo DB, et al.: The imprint of intrathymic self-peptides on the mature T cell receptor repertoire. Immunity 1997;7:517–524.CrossRefGoogle Scholar
  8. 8.
    Miyazaki T, et al.: Mice lacking H2-M complexes, enigmatic elements of the MHC class II peptide-loading pathway. Cell 1996; 84:531–541.PubMedCrossRefGoogle Scholar
  9. 9.
    Ignatowicz L, Kappler J, Marrack P: The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 1996;84:521–529.PubMedCrossRefGoogle Scholar
  10. 10.
    Martin WD, et al.: H2-M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell 1996; 84:543–550.PubMedCrossRefGoogle Scholar
  11. 11.
    Fung-Leung WP, et al.: Antigen presentation and T cell development in H2-M-deficient mice. Science 1996;271:1278–1281.PubMedCrossRefGoogle Scholar
  12. 12.
    Grubin CE, et al.: Deficient positive selection of CD4 T cells in mice displaying altered repertoires of MHC class II-bound self-peptides. Immunity 1997;7: 197–208.PubMedCrossRefGoogle Scholar
  13. 13.
    Tourne S, et al.: Selection of a broad repertoire of CD4+ T cells in H-2Ma0/0 mice. Immunity 1997;7:187–195.PubMedCrossRefGoogle Scholar
  14. 14.
    Surh CD, et al.: Thymic selection by a single MHC/peptide ligand produces a semidiverse repertoire of CD4+ T cells. Immunity 1997; 7:209–219.PubMedCrossRefGoogle Scholar
  15. 15.
    Sant’ Angelo DB, et al.: A molecular map of T cell development. Immunity 1998;9:2:179–186.CrossRefGoogle Scholar
  16. 16.
    Goodnow CC: Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires. Proc Natl Acad Sci USA 1996;93: 2264–2271.PubMedCrossRefGoogle Scholar
  17. 17.
    Lam KP, Kuhn R, Rajewsky K:In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death [see comments]. Cell 1997;90:1073–1083.PubMedCrossRefGoogle Scholar
  18. 18.
    Jerne NK: Toward a network theory of the immune system. Ann Immunol 1974;125C:373–389.Google Scholar
  19. 19.
    Baron JL, et al.: Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 1993;177:57–68.PubMedCrossRefGoogle Scholar
  20. 20.
    Wong FS, et al.:CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J Exp Med 1996; 183:67–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Lafaille JJ, et al.: High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 1994;78:399–408.PubMedCrossRefGoogle Scholar
  22. 22.
    Olivares-Villagomez D, et al.: Regulatory CD4+ T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 1998; 188:1883–1894.PubMedCrossRefGoogle Scholar
  23. 23.
    Van de Keere T, Tonegawa S: CD4+ T cells prevent spontaneous experimental autoimmune encephalomyelitis in anti-myelin basic protein T cell receptor transgenic mice. J Exp Med 1998; 188: 1875–1882.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen Y, et al.: Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalo myelitis and dose-depen dent induction of regulatory cells. Proc Natl Acad Sci USA 1996; 93:388–391.PubMedCrossRefGoogle Scholar
  25. 25.
    Susan Wong F, et al.: The role of lymphocyte subsets in accelerated diabetes in nonobese diabetic-rat insulin promoter-B7-1 (NOD-RIP-B7-1) mice. J Exp Med 1998;187:1985–1993.CrossRefGoogle Scholar
  26. 26.
    Bellgrau D, et al.: A role for CD95 ligand in preventing graft. Nature 1995;377:630–632.PubMedCrossRefGoogle Scholar
  27. 27.
    Griffith TS, et al.: Fas ligandinduced apoptosis as a mechanism of immune privilege. Science 1995;270:1189–1192.PubMedCrossRefGoogle Scholar
  28. 28.
    Chervonsky AV, et al.: The role of Fas in autoimmune diabetes. Cell 1997;89:1:17–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang ZJ, et al.: Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci USA 1991;88:10252–10256.PubMedCrossRefGoogle Scholar
  30. 30.
    Zekzer D, et al.: Inhibition of diabetes by an insulin-reactive CD4 T-cell clone in the nonobese diabetic mouse. Diabetes 1997; 46:1124–1132.PubMedCrossRefGoogle Scholar
  31. 31.
    Fugger L, et al.: The role of human major histocompatibility complex (HLA) genes in disease, in Scriver CR, et al. (eds): The Metabolic and Molecular Bases of Inherited Disease. New York, NY, McGraw-Hill, 1995, Chap. 9, pp. 555–585.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  1. 1.Section of ImmunobiologyYale University School of Medicine, and The Howard Hughes Medical InstituteNew Haven

Personalised recommendations