Immunologic Research

, 17:313

The intercellular adhesion molecule (ICAM) family of proteins

New members and novel functions
  • Joel S. Hayflick
  • Patrick Kilgannon
  • W. Michael Gallatin
Article

Abstract

Macromolecular adhesive associations between cells are important for transmitting spatial and temporal information that is critical for immune system function. One such group of proteins, the intercellular adhesion molecules (ICAMs), has grown as newly identified members are revealed. In addition, the functions of the ICAMs, in general, have begun to be better understood, including intracellular signaling events. This information has led to the design of novel therapeutic agents that may prove effective in a variety of disease states.

Key Words

Intercellular adhesion molecules Signaling Therapeutics 

References

  1. 1.
    Williams AF: The immunoglobulin superfamily takes shape (news). Nature (Lond) 1984;308 (5954):12–13.CrossRefGoogle Scholar
  2. 2.
    Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA: Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 1988;52(6):925–933.PubMedCrossRefGoogle Scholar
  3. 3.
    Simmons D, Makgoba MW, Seed B: ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature (Lond) 1988;331(6157): 624–627.CrossRefGoogle Scholar
  4. 4.
    Staunton DE, Dustin ML, Erickson HP, Springer TA: The arrangement of the immunoglobulinlike domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus (published errata appear in Cell Jun 15 190;61(2): 1157 and Sep 20 1991;66(6):following 1311). Cell 1990;61(2):243–254.Google Scholar
  5. 5.
    Vonderheide RH, Tedder TF, Springer TA, Staunton DE: Residues within a conserved amino acid motif of domains 1 and 4 of VCAM-1 are required for binding toVLA-4. J Cell Biol 1994;125(1): 215–222.PubMedCrossRefGoogle Scholar
  6. 6.
    Altmann DM, Hogg N, Trowsdale J, Wilkinson D: Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells. Nature (Lond) 1989;338(6215): 512–514.CrossRefGoogle Scholar
  7. 7.
    Springer TA: Adhesion receptors of the immune system. Nature (Lond) 1990;346(6283):425–434.CrossRefGoogle Scholar
  8. 8.
    Sligh JE, Jr., Ballantyne CM, Rich SS, Hawkins HK, Smith CW, Bradley A, Beaudet AL: Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1. Proc Natl Acad Sci USA 1993; 90(18):8529–8533.PubMedCrossRefGoogle Scholar
  9. 9.
    Xu H, Gonzalo JA, St Pierre Y, Williams IR, Kupper TS, Cotran RS, Springer TA, Gutierrez-Ramos JC: Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med 1994; 180(1):95–109.PubMedCrossRefGoogle Scholar
  10. 10.
    Soriano SG, Lipton SA, Wang YF, Xiao M, Springer TA, Gutierrez-Ramos JC, Hickey PR: Intercellular adhesion molecule-1-deficient mice are less susceptible to cerebral ischemia-reperfusion injury. Ann Neurol 1996;39(5): 618–624.PubMedCrossRefGoogle Scholar
  11. 11.
    Berendt AR, Simmons DL, Tansey J, Newbold CI, Marsh K: Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature (Lond) 1989;341(6237):57–59.CrossRefGoogle Scholar
  12. 12.
    Fortin JF, Cantin R, Lamontagne G, Tremblay M: Host-derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. J Virol 1997;71(5):3588–3596.PubMedGoogle Scholar
  13. 13.
    Dustin ML, Springer TA: Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol 1988;107(1): 321–331.PubMedCrossRefGoogle Scholar
  14. 14.
    de Fougerolles AR, Stacker SA, Schwarting R, Springer TA: Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J Exp Med 1991;174(1): 253–267.PubMedCrossRefGoogle Scholar
  15. 15.
    Staunton DE, Dustin ML, Springer TA: Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature (Lond) 1989;339(6219): 61–64.CrossRefGoogle Scholar
  16. 16.
    Xie J, Li R, Kotovuori P, Vermot-Desroches C, Wijdenes J, Arnaout MA, Nortamo P, Gahmberg CG: Intercellular adhesion molecule-2 (CD 102) binds to the leukocyte integrin CD11b/CD18 through the A domain. J Immunol 1995;155 (7):3619–3628.PubMedGoogle Scholar
  17. 17.
    Vazeux R, Hoffman PA, Tomita JK, Dickinson ES, Jasman RL, St. John T, Gallatin WM: Cloning and characterization of a new intercellular adhesion molecule ICAM-R. Nature (Lond) 1992;360: 485–488.CrossRefGoogle Scholar
  18. 18.
    Fawcett J, Holness CLL, Needham LA, Turley H, Gatter KC, Mason DY, Simmons DL: Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leukocytes. Nature (Lond) 1992;360:481–484.CrossRefGoogle Scholar
  19. 19.
    de Fougerolles AR, Klickstein LB, Springer TA: Cloning and expression of intercellular adhesion molecule 3 reveals strong homology to other immunoglobulin family counter-receptors for lymphocyte function-associated antigen 1. J Exp Med 1993;177(4): 1187–1192.PubMedCrossRefGoogle Scholar
  20. 20.
    Sadhu C, Lipsky B, Erickson HP, Hayflick J, Dick KO, Gallatin WM, Staunton DE: LFA-1 binding site in ICAM-3 contains a conserved motif and non-contiguous amino acids. Cell Adhes Commun 1994;2:429–440.PubMedCrossRefGoogle Scholar
  21. 21.
    de Fougerolles AR, Diamond MS, Springer TA: Heterogenous glycosylation of ICAM-3 and lack of interaction with Mac-1 and p 150,95. EurJ Immunol 1995;25(4):1008–1012.CrossRefGoogle Scholar
  22. 22.
    van Kooyk Y, Binnerts ME, Edwards CP, Champe M, Berman PW, Figdor CG, Bodary SC: Critical amino acids in the lymphocyte function-associated antigen-1 I domain mediate intercellular adhesion molecule 3 binding and immune function. J Exp Med 1996;183(3):1247–1252.PubMedCrossRefGoogle Scholar
  23. 23.
    Klickstein LB, York MR, Fougerolles AR, Springer TA: Localization of the binding site on intercellular adhesion molecule-3 (ICAM-3) for lymphocyte functionassociated antigen 1 (LFA-1). J Biol Chem 1996;271(39):23,920–23,927.Google Scholar
  24. 24.
    Van der Vieren M, Le Trong H, Wood CL, Moore PF, St. John T, Staunton DE, Gallatin WM: A novel leukointegrin, alpha-d beta-2, binds preferentially to ICAM-3. Immunity 1995;3:683–690.PubMedCrossRefGoogle Scholar
  25. 25.
    Vilella R, Mila J, Lozano F, Alberola-Ila J, Places L, Vives J: Involvement of the CDw50 molecule in allorecognition. Tissue Antigens 1990;36(5):203–210.PubMedGoogle Scholar
  26. 26.
    de Fougerolles AR, Qin X, Springer TA: Characterization of the function of intercellular adhesion molecule (ICAM)-3 and comparison with ICAM-1 and ICAM-2 in immune responses. J Exp Med 1994;179(2):619–629.PubMedCrossRefGoogle Scholar
  27. 27.
    Acevedo A, del Pozo MA, Arroyo AG, Sanchez-Mateos P, Gonzalez-Amaro R, Sanchez-Madrid F: Distribution of ICAM-3-bearing cells in normal human tissues. Expression of a novel counterreceptor for LFA-1 in epidermal Langerhans cells. Am J Pathol 1993;143(3):774–783.PubMedGoogle Scholar
  28. 28.
    Staquet MJ, Peguet J, Jacquet C, Dezutter-Dambuyant C, Schmitt D: Expression of ICAM-3 on human epidermal dendritic cells. Immunobiology 1995;192(3-4): 249–261.PubMedGoogle Scholar
  29. 29.
    Teunissen MB, Koomen CW, Bos JD: Intercellular adhesion molecule-3 (CD50) on human epidermal Langerhans cells participates in T cell activation. J Invest Dermatol 1995;104(6):995–998.PubMedCrossRefGoogle Scholar
  30. 30.
    Griffiths CE, Railan D, Gallatin WM, Cooper KD: The ICAM-3/ LFA-1 interaction is critical for epidermal Langerhans cell alloantigen presentation to CD4+ T cells. Br J Dermatol 1995;133(6): 823–829.PubMedCrossRefGoogle Scholar
  31. 31.
    Christophers E: The immunopathology of psoriasis. Int Arch Allergy Immunol 1996;110(3): 199–206.PubMedGoogle Scholar
  32. 32.
    Doussis-Anagnostopoulou I, Kaklamanis L, Cordell J, Jones M, Turley H, Pulford K, Simmons D, Mason D, Gatter K: ICAM-3 expression on endothelium in lymphoid malignancy. Am J Pathol 1993;143(4):1040–1043.PubMedGoogle Scholar
  33. 33.
    Patey N, Vazeux R, Canioni D, Potter T, Gallatin WM, Brousse N: Intercellular adhesion molecule-3 on endothelial cells. Expression in tumors but not in inflammatory responses. Am J Pathol 1996; 148 (2):465–472.PubMedGoogle Scholar
  34. 34.
    Yoshimura T, Johnson DG:cDNA cloning and expression of guinea pig neutrophil attractant protein-1 (Nap-1). Nap-1 is highly conserved in guinea pig. J Immunol 1993;151(11):6225–6236.PubMedGoogle Scholar
  35. 35.
    Bailly P, Hermand P, Callebaut I, Sonneborn HH, Khamlichi S, Mornon JP, Cartron JP: The LW blood group glycoprotein is homologous to intercellular adhesion molecules. Proc Natl Acad Sci USA 1994;91(12):5306–5310.PubMedCrossRefGoogle Scholar
  36. 36.
    Levine P, Stetson RE: An unusual case of intragroup agglutination. JAMA 1939;113:126,127.Google Scholar
  37. 37.
    Sistonen P: Linkage of the LW blood group locus with the complement C3 and Lutheran blood group loci. Ann Hum Genet 1984;48(Pt 3):239–242.PubMedCrossRefGoogle Scholar
  38. 38.
    Marsh WL, Chaganti RS, Gardner FH, Mayer K, Nowell PC, German J: Mapping human autosomes: evidence supporting assignment of rhesus to the short arm of chromosome no. 1. Science (Wash DC) 1974;183(128):966–968.CrossRefGoogle Scholar
  39. 39.
    Bailly P, Tontti E, Hermand P, Cartron JP, Gahmberg CG: The red cell LW blood group protein is an intercellular adhesion molecule which binds to CD11/CD18 leukocyte integrins. Eur J Immunol 1995;25(12):3316–3320.PubMedCrossRefGoogle Scholar
  40. 40.
    Yoshihara Y, Oka S, Nemoto Y, Watanabe Y, Nagata S, Kagamiyama H, Mori K: An ICAM-related neuronal glycoprotein, telencephalin, with brain segmentspecific expression. Neuron 1994; 12(3):541–553.PubMedCrossRefGoogle Scholar
  41. 41.
    Mizuno T, Yoshihara Y, Inazawa J, Kagamiyama H, Mori K: cDNA cloning and chromosomal localization of the human telencephalin and its distinctive interaction with lymphocyte function-associated antigen-1. J Biol Chem 1997;272(2): 1156–1163.PubMedCrossRefGoogle Scholar
  42. 42.
    Tian L, Yoshihara Y, Mizuno T, Mori K, Gahmberg CG: The neuronal glycoprotein telencephalin is a cellular ligand for the CD11a/ CD18 leukocyte integrin. J Immunol 1997;158(2):928–936.PubMedGoogle Scholar
  43. 43.
    Lewis M, Kaita H, Coghlan G, Philipps S, Belcher E, McAlpine PJ, Coopland GR, Woods RA: The chromosome 19 linkage group LDLR, C3, LW, APOC2, LU, SE in man. Ann Hum Genet 1988;52 (Pt2):137–144.PubMedCrossRefGoogle Scholar
  44. 44.
    Sansom D, Borrow J, Solomon E, Trowsdale J: The human ICAM2 gene maps to 17q23-25. Genomics 1991;11(2):462–464.PubMedCrossRefGoogle Scholar
  45. 45.
    Trask B, Fertitta A, Christensen M, Youngblom J, Bergmann A, Copeland A, de Jong P, Mohrenweiser H, Olsen A, Carrano A, et al.: Fluorescence in situ hybridization mapping of human chromosome 19: cytogenetic band location of 540 cosmids and 70 genes or DNA markers. Genomics 1993;15(1): 133–145.PubMedCrossRefGoogle Scholar
  46. 46.
    Bossy D, Mattei MG, Simmons DL: The human intercellular adhesion molecule 3 (ICAM3) gene is located in the 19pl3.2-p 13.3 region, close to the ICAM1 gene. Genomics 1994;23(3):712,713.CrossRefGoogle Scholar
  47. 47.
    Naruse K, Ueno M, Staoh T, Nomiyama H, Tei H, Takeda M, Ledbetter DH, Coillie EV, Opdenakker G, Gunge N, Sakaki Y: A YAC contig of the human CC chemokine genes clustered on chromosome 17q 11.2. Genomics 1996;34: 236–240.PubMedCrossRefGoogle Scholar
  48. 48.
    Alvarez V, Coto E, Serien F, Lopez-Larrea C: A physical map of two clusters containing the genes for six proinflammatory receptors. Immunogenetics 1994; 40(2):100–103.PubMedCrossRefGoogle Scholar
  49. 49.
    Raport CJ, Schweickart VL, Chantry D, Eddy RL, Jr., Shows TB, Godiska R, Gray PW: New members of the chemokine receptor gene family. J Leukoc Biol 1996;59(1):18–23.PubMedGoogle Scholar
  50. 50.
    Jensenius JC, Williams AF: The T lymphocyte antigen receptor—paradigm lost. Nature (Lond) 1982;300(5893):583–588.CrossRefGoogle Scholar
  51. 51.
    Casasnovas JM, Springer TA, Liu JH, Harrison SC, Wang JH: Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature (Lond) 1997;387 (6630):312–315.CrossRefGoogle Scholar
  52. 52.
    Reilly PL, Woska JR, Jr., Jeanfavre DD, McNally E, Rothlein R, Bormann BJ: The native structure of intercellular adhesion molecule-1 (ICAM-1) is a dimer. Correlation with binding to LFA-1. J Immunol 1995;155(2):529–532.PubMedGoogle Scholar
  53. 53.
    Miller J, Knorr R, Ferrone M, Houdei R, Carron CP, Dustin ML: Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J Exp Med 1995;182(5):1231–1241.PubMedCrossRefGoogle Scholar
  54. 54.
    Oka S, Mori K, Watanabe Y: Mammalian telencephalic neurons express a segment-specific membrane glycoprotein, telencephalin. Neuroscience 1990;35(1):93–103.PubMedCrossRefGoogle Scholar
  55. 55.
    Chirathaworn C, Tibbetts SA, Chan MA, Benedict SH: Crosslinking of ICAM-1 on T cells induces transient tyrosine phosphorylation and inactivation of cdc2 kinase. J Immunol 1995; 155(12):5479–5482.PubMedGoogle Scholar
  56. 56.
    Durieu-Trautmann O, Chaverot N, Cazaubon S, Strosberg AD, Couraud PO: Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J Biol Chem 1994;269(17):12,536–12,540.Google Scholar
  57. 57.
    Koyama Y, Tanaka Y, Saito K, Abe M, Nakatsuka K, Morimoto I, Auron PE, Eto S: Cross-linking of intercellular adhesion molecule 1 (CD54) induces AP-1 activation and IL-1-beta transcription. J Immunol 1996;157:5097–5103.PubMedGoogle Scholar
  58. 58.
    Rothlein R, Kishimoto TK, Mainolfi E: Cross-linking of ICAM-1 induces co-signaling of an oxidative burst from mononuclear leukocytes. J Immunol 1994;152 (5):2488–2495.PubMedGoogle Scholar
  59. 59.
    Hernandez-Caselles T, Rubio G, Campanero MR, del Pozo MA, Muro M, Sanchez-Madrid F, Aparicio P: ICAM-3, the third LFA-1 counterreceptor, is a co-stim-ulatory molecule for both resting and activated T lymphocytes. Eur J Immunol 1993;23(11): 2799–2806.PubMedCrossRefGoogle Scholar
  60. 60.
    del Pozo MA, Campanero MR, Sanchez-Mateos P, Arroyo AG, Pulido R, Munoz C, Hernandez-Caselles T, Aparicio P, Sanchez-Madrid F: Role of ICAM-3 in intercellular adhesion and activation of T lymphocytes. Cell Adhes Commun 1994;2(3):211–218.PubMedCrossRefGoogle Scholar
  61. 61.
    Arroyo AG, Campanero MR, Sanchez-Mateos P, Zapata JM, Ursa MA, del Pozo MA, Sanchez-Madrid F: Induction of tyrosine phosphorylation during ICAM-3 and LFA-1-mediated intercellular adhesion, and its regulation by the CD45 tyrosine phosphatase. J Cell Biol 1994;126(5):1277–1286.PubMedCrossRefGoogle Scholar
  62. 62.
    Juan M, Vinas O, Pino-Otin MR, Places L, Martinez-Caceres E, Barcelo JJ, Miralles A, Vilella R, de la Fuente MA, Vives J, et al.: CD50 (intercellular adhesion molecule 3) stimulation induces calcium mobilization and tyrosine phosphorylation through p59fyn and p561ck in Jurkat T cell line. J Exp Med 1994;179(6):1747–1756.PubMedCrossRefGoogle Scholar
  63. 63.
    Campanero MR, Sanchez-Mateos P, del Pozo MA, Sanchez-Madrid F: ICAM-3 regulates lymphocyte morphology and integrin-mediated T cell interaction with endothelial cell and extracellular matrix ligands. J Cell Biol 1994; 127(3):867–878.PubMedCrossRefGoogle Scholar
  64. 64.
    Cid MC, Esparza J, Juan M, Miralles A, Ordi J, Vilella R, UrbanoMarquez A, Gaya A, Vives J, Yague J: Signaling through CD50 (ICAM-3) stimulates T lymphocyte binding to human umbilical vein endothelial cells and extracellular matrix proteins via an increase in beta 1 and beta 2 integrin function. Eur J Immunol 1994;24(6):1377–1382.PubMedCrossRefGoogle Scholar
  65. 65.
    Hayflick JS, Stine J, Fox R, Hoekstra D, Gallatin WM: Functional mapping of the cytoplasmic region of intercellular adhesion molecule 3 reveals important roles for serine residues. J Biol Chem 1997;272(35):22,207–22,214.CrossRefGoogle Scholar
  66. 66.
    Croft M, Bradley LM, Swain SL: Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol 1994;152(6):2675–2685.PubMedGoogle Scholar
  67. 67.
    Valitutti S, Dessing M, Aktories K, Gallati H, Lanzavecchia A: Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J Exp Med 1995;181(2):577–584.PubMedCrossRefGoogle Scholar
  68. 68.
    Theriot JA, Mitchison TJ: Actin microfilament dynamics in locomoting cells (see comments). Nature (Lond) 1991;352(6331): 126–131.CrossRefGoogle Scholar
  69. 69.
    DeBell KE, Conti A, Alava MA, Hoffman T, Bonvini E: Microfilament assembly modulates phospholipase C-mediated signal transduction by the TCR/CD3 in murine T helper lymphocytes. J Immunol 1992;149(7):2271–2280.PubMedGoogle Scholar
  70. 70.
    Parsey MV, Lewis GK: Actin polymerization and pseudopod reorganization accompany antiCD3-induced growth arrest in Jurkat T cells. J Immunol 1993; 151(4):1881–1893.PubMedGoogle Scholar
  71. 71.
    Phatak PD, Packman CH: Engagement of the T cell antigen receptor by anti-CD3 monoclonal antibody causes a rapid increase in lymphocyte F-actin. J Cell Physiol 1994; 159(2):365–370.PubMedCrossRefGoogle Scholar
  72. 72.
    Phatak PD, Packman CH, Lichtman MA: Protein kinase C modulates actin conformation in human T lymphocytes. J Immunol 1988;141(9):2929–2934.PubMedGoogle Scholar
  73. 73.
    Brock MA, Chrest F: Differential regulation of actin polymerization following activation of resting T lymphocytes from young and aged mice. J Cell Physiol 1993;157(2): 367–378.PubMedCrossRefGoogle Scholar
  74. 74.
    Trachsel S, Keller HU: Selective responses (actin polymerization, shape changes, locomotion, pinocytosis) to the PKC inhibitor Ro 31-8220 suggest that PKC discriminately regulates functions of human blood lymphocytes. J LeukocBiol 1995;57(4):587–591.Google Scholar
  75. 75.
    Rosette C, Karin M: Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-kappa B. J Cell Biol 1995;128(6):1111–1119.PubMedCrossRefGoogle Scholar
  76. 75a.
    Kessel JM, Hayflick J, Weyrich AS, Hoffman PA, Gallatin M, Mclntyre TM, Prescott SM, Zimmerman GA: Engagement of intercellular adhesion molecule-3 (ICAM-3) induces chemokine secretion and spreading by myeloid leukocytes. J Immunol 1998; in press.Google Scholar
  77. 76.
    Vogetseder W, Dierich MP: Intercellular adhesion molecule-1 (ICAM-1, CD 54) is associated with actin-filaments. Immunobiology 1991;182(2):143–151.PubMedGoogle Scholar
  78. 77.
    Carpen O, Pallai P, Staunton DE, Springer TA: Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. J Cell Biol 1992;118(5):1223,1234.PubMedCrossRefGoogle Scholar
  79. 78.
    Federici C, Camoin L, Hattab M, Strosberg AD, Couraud PO: Association of the cytoplasmic domain of intercellular-adhesion molecule-1 with glyceraldehyde-3-phosphate dehydrogenase and beta-tubulin. Euro J Biochem 1996;238 (1): 173–180.CrossRefGoogle Scholar
  80. 79.
    Heiska L, Kantor C, Parr T, Critchley DR, Vilja P, Gahmberg CG, Carpen O: Binding of the cytoplasmic domain of intercellular adhesion molecule-2 (ICAM-2) to alpha-actinin. J Biol Chem 1996; 271(42):26,214–26,219.Google Scholar
  81. 80.
    Helander TS, Carpen O, Turunen O, Kovanen PE, Vaheri A, Timonen T: ICAM-2 redistributed by ezrin as a target for killer cells. Nature (Lond) 1996;382(6588): 265–268.CrossRefGoogle Scholar
  82. 81.
    Jockusch BM, Rudiger M: Crosstalk between cell adhesion molecules: viniculin as a paradigm for reguation by conformation. Cell Biology 1996;6:311–315.Google Scholar
  83. 82.
    Bray D, White JG: Cortical flow in animal cells. Science (Wash DC) 1988;239(4842):883–888.CrossRefGoogle Scholar
  84. 83.
    Dustin ML, Carpen O, Springer TA: Regulation of locomotion and cell-cell contact area by the LFA-1 and ICAM-1 adhesion receptors. J Immunol 1992;148(9):2654–2663.PubMedGoogle Scholar
  85. 84.
    Campanero MR, del Pozo MA, Arroyo AG, Sanchez-Mateos P, Hernandez-Caselles T, Craig A, Pulido R, Sanchez-Madrid F: ICAM-3 interacts with LFA-1 and regulates the LFA-l/ICAM-1 cell adhesion pathway. J Cell Biol 1993;123(4):1007–1016.PubMedCrossRefGoogle Scholar
  86. 85.
    del Pozo MA, Sanchez-Mateos P, Nieto M, Sanchez-Madrid F: Chemokines regulate cellular polarization and adhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway. J Cell Biol 1995;131(2):495–508.PubMedCrossRefGoogle Scholar
  87. 86.
    del Pozo MA, Pulido R, Munoz C, Alvarez V, Humbria A, Campanero MR, Sanchez-Madrid F: Regulation of ICAM-3 (CD50) membrane expression on human neutrophils through a proteolytic shedding mechanism. Eur J Immunol 1994;24(11):2586–2594.PubMedCrossRefGoogle Scholar
  88. 87.
    Pino-Otin MR, Vinas O, de la Fuente MA, Juan M, Font J, Torradeflot M, Pallares L, Lozano F, Alberola-Ila J, Martorell J, Yague J, Vives J, Gaya A: Existence of a soluble form of CD50 (intercellular adhesion molecule-3) produced upon human lymphocyte activation. J Immunol 1995;154:3015–3024.PubMedGoogle Scholar
  89. 88.
    Martin S, Rieckmann P, Melchers I, Wagner R, Bertrams J, Voskuyl AE, Roep BO, Zielasek J, Heidenthal E, Weichselbraun I, et al: Circulating forms of ICAM-3 (cICAM-3). Elevated levels in autoimmune diseases and lack of association with cICAM-1. J Immunol 1995;154(4):1951–1955.PubMedGoogle Scholar
  90. 89.
    Sudhoff T, Wehmeier A, Arning M, Bauser U, Schlomer P, Aul C, Schneider W: Increases of sICAM1 during neutropenic pneumonia in leukemic patients. Leukemia 1997; 11(3):346–351.PubMedCrossRefGoogle Scholar
  91. 90.
    Rieckmann P, Altenhofen B, Riegel A, Baudewig J, Felgenhauer K: Soluble adhesion molecules (sVCAM-1 and sICAM-1) in cerebrospinal fluid and serum correlate with MRI activity in multiple sclerosis. Ann Neurol 1997;41(3):326–333.PubMedCrossRefGoogle Scholar
  92. 91.
    Gonokami Y, Konno S, Kurokawa M, Kawazu K, Ueno K, Tomita K, Ike M, Nyui M, Adachi M: Circulating intracellular adhesion molecule-1 concentrations following bronchial provocation in atopic asthma. Int Arch Allergy Immunol 1997;112(4):386–391.PubMedCrossRefGoogle Scholar
  93. 92.
    Huguenel ED, Cohn D, Dockum DP, Greve JM, Fournel MA, Hammond L, Irwin R, Mahoney J, McClelland A, Muchmore E, Ohlin AC, Scuderi P: Prevention of rhinovirus infection in chimpanzees by soluble intercellular adhesion molecule-1. Am J Respir Crit Care Med 1997;155(4):1206–1210.PubMedGoogle Scholar
  94. 93.
    Stepkowski SM, Tu Y, Condon TP, Bennett CF: Blocking of heart allograft rejection by intercellular adhesion molecule-1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities (published erratum appears in J Immunol 1995 Feb 1;154(3): 1521). J Immunol 1994;153(11): 5336–5346.Google Scholar
  95. 94.
    Stepkowski SM, Tu Y, Condon TP, Bennett CF: Induction of transplantation tolerance by treatment with ICAM-1 antisense oligonucleotides and anti-LFA-1 monoclonal antibodies. Transplant Proc 1995;27(1):113.PubMedGoogle Scholar
  96. 95.
    Katz SM, Browne B, Phan T, Wang ME, Bennett CF, Stepkowski SM, Kahan BD: Efficacy of ICAM-1 antisense oligonucleotide in pancreatic islet transplantation. Transplant Proc 1995;27 (6):3214.PubMedGoogle Scholar
  97. 96.
    Kumasaka T, Quinlan WM, Doyle NA, Condon TP, Sligh J, Takei F, Beaudet A, Bennett CF, Doerschuk CM: Role of the intercellular adhesion molecule-1 (ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice. J Clin Invest 1996;97(10): 2362–2369.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Joel S. Hayflick
    • 1
  • Patrick Kilgannon
    • 1
  • W. Michael Gallatin
    • 1
  1. 1.ICOS Corp.Bothell

Personalised recommendations