Immunologic Research

, Volume 16, Issue 3, pp 243–259 | Cite as

Conformational changes in MHC class I molecules

Antibody, T-cell receptor, and NK cell recognition in an HLA-B7 model system
  • Kelly D. Smith
  • Zoya B. Kurago
  • Charles T. Lutz
Article

Abstract

In this article we review the role of MHC conformation, including peptide-induced MHC conformation, in forming antibody (Ab), T-cell receptor (TCR), and natural killer (NK) cell receptor epitopes. Abs recognize conformational major histocompatibility (MHC) epitopes that often are influenced by the identity of MHC-bound peptide. Diverse TCRs recognize a common docking site on peptide/MHC complexes and directly contact peptide. Human NK cell inhibitory receptors (KIR) appear to recognize limited regions of the HLA α1 helix. DX9+ KIR specifically focus on HLA-B residues 82 and 83. However, NK cells recognize much broader regions of HLA class I molecules and are sensitive to bound peptides. Thus, several classes of lymphocyte receptors are peptidespecific. Peptide specificity could be the result of direct contact with the receptor, or to conformational shifts in MHC residues that interact with both receptor and bound peptide.

Key Words

MHC class I HLA-B7 Antibody T-cell receptor NK cell Conformation Epitope Peptide Cytolytic T-lymphocyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spriggs MK: One step ahead of the game-viral immunomodulatory molecules. Annu Rev Inimunol 1996: 14: 101–130.CrossRefGoogle Scholar
  2. 2.
    Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG: Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-I. Nature 1995;375:685–688.PubMedCrossRefGoogle Scholar
  3. 3.
    Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D: Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995;375:411–415.PubMedCrossRefGoogle Scholar
  4. 4.
    Früh K, Ahn K, Djaballah H, Sempe P, van Endert PM, Tampe R, Peterson PA, Yang Y: A viral inhibitor of peptide transporters for antigen presentation. Nature 1995;375:415–418.PubMedCrossRefGoogle Scholar
  5. 5.
    Wiertz EJHJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL: The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 1996;84:769–779.PubMedCrossRefGoogle Scholar
  6. 6.
    Bevan MJ: The major histocompatibility complex determines susceptibility to cytotoxic T cells directed against minor histocompatibility antigens. J Exp Med 1975;142:1349–1364.PubMedCrossRefGoogle Scholar
  7. 7.
    Germain RN: MHC-dependent antigen processing and peptide presentation: Providing ligands for T lymphocyte activation. Cell 1994;76:287–299.PubMedCrossRefGoogle Scholar
  8. 8.
    Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michei H, Sevilir N, Cox AL, Appella E, Engelhard VH: Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 1992;255:1261–1263.PubMedCrossRefGoogle Scholar
  9. 9.
    Huczko EL, Bodnar WM, Benjamin D, Sakaguchi K, Zhu NZ, Shabanowitz J, Henderson RA, Appella E, Hunt DF, Engelhard VH: Characteristics of endogenous peptides eluted from the class I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. J Immunol 1993;151:2572–2587.PubMedGoogle Scholar
  10. 10.
    Fremont DH, Matsumura M, Stura EA, Peterson PA, Wilson IA: Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb/ Science 1992;257:919–927.PubMedCrossRefGoogle Scholar
  11. 11.
    Madden DR, Garboczi DN, Wiley DC: The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA A2. Cell 1993;75:693–708.PubMedCrossRefGoogle Scholar
  12. 12.
    Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC: Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994;368:215–221.PubMedCrossRefGoogle Scholar
  13. 13.
    Fremont DH, Stura EA, Matsumura M, Peterson PA, Wilson IA: Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Proc Natl Acad Sci USA 1995;92:2479–2483.PubMedCrossRefGoogle Scholar
  14. 14.
    Madden DR: The three-dimensional structure of peptide-MHC complexes. Ann Rev Immunol 1995; 13:587–622.CrossRefGoogle Scholar
  15. 15.
    Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC: Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 1996;384: 134–141.PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, Wilson IA: An αβ T cell receptor structure at 2.5 Å and its orientation in the TCR MHC complex. Science 1996;274:209–219.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith KJ, Reid SW, Harlos K, McMichael AJ, Stuart Dl, Bell Jl, Jones KY: Bound water structure and polymorphic amino ac:ids act together to allow the binding of different peptides to MHC class I HLA-B53. Immunity 1996;4: 215–228.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith KJ, Reid SW, Stuart Dl, McMichael AJ, Jones KY, Bell Jl: An altered position of the α2 helix of MHC class I is revealed by the crystal structure of HLA-B *3501. Immunity 1996;4:203–213.PubMedCrossRefGoogle Scholar
  19. 19.
    Young ACM, Zhang W, Sacchettini JC, Nathenson SG: The three-dimensional structure of H-2Db at 2.4 Å resolution: implications for antigen-determinant selection. Cell 1994;76: 39–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Guo H-C, Madden DR, Silver ML, Jardetzky TS, Gorga JC, Strominger JL, Wiley DC: Comparison of the P2 specificity pocket in three human histocompatibility antigens: HLAA*6801, HLAA*0201, and HLAB*2705. Proc Natl Acad Sci USA 1993;90:8053–8057.PubMedCrossRefGoogle Scholar
  21. 21.
    Davies DR, Padian EA, Sheriff S: Antibody-antigen complexes. Annu Rev Biochem 1990;59:439–473.PubMedCrossRefGoogle Scholar
  22. 22.
    Benjamin DC, Berzofsky JA, East LJ, Gurd FRN, Hannum C, Leach SJ, Margoliash E, Michael JG, Miller A, Prager EM, et al.: The antigenic structure of proteins: A reappraisal. Ann Rev Immunol 1984;2:67–101.CrossRefGoogle Scholar
  23. 23.
    Jin L, Fendly BM, Wells JA: High resolution functional analysis of antibody-antigen interactions. J Mol Biol 1992;226:851–865.PubMedCrossRefGoogle Scholar
  24. 24.
    Jin L, Wells JA: Dissecting the energetics of an antibody-antigen interface by alanine shaving and molecular grafting. Prot Sci 1994;3:2351–2357.Google Scholar
  25. 25.
    Collawn JF, Wallace CJA, Proudfoot AEI, Paterson Y: Monoclonal antibodies as probes of conformational changes in protein-engineered cytochrome c. J Biol Chem 1988;263:8625–8634.PubMedGoogle Scholar
  26. 26.
    Cunningham BC, Jhurani P, Ng P, Wells JA: Receptor and antibody epitopes in human growth hormone identified by homolog-scanning mutagenesis. Science 1989;243: 1330–1336.PubMedCrossRefGoogle Scholar
  27. 27.
    Shimizu Y, Geraghty DE, Koller BH, Orr HT, DeMars R: Transfer and expression of three cloned human non-HLA-A,B,C class I major histocompatibility complex genes in mutant lymphoblastoid cells. Proc Natl Acad Sci USA 1988;85:227–231.PubMedCrossRefGoogle Scholar
  28. 28.
    Smith KD, Mace BE, Valenzuela A, Vigna JL, McCutcheon JA, Barbosa JA, Huczko E, Engelhard VH, Lutz CT: Probing HLA-B 37 conformational shifts induced by peptide-binding groove mutations and bound peptide with anti-HLA monoclonal antibodies. J Immunol 1996; 157:2470–2478.PubMedGoogle Scholar
  29. 29.
    Vigna JL, Smith KD, Lutz CT: Invariant chain associates preferentially with HLA class 1/ β2-microglobulin heterodimers in an allele-specific manner, and association is influenced by peptide binding groove residues. J Immunol 1996; 157:4503–4510.PubMedGoogle Scholar
  30. 30.
    Ways JP, Parham P: The antigenic structure of HLA-A2: an analysis with competitive binding assays and monoclonal antibodies. J Immunol 1983; 131:856–863.PubMedGoogle Scholar
  31. 31.
    Tanabe M, Sekimata M, Ferrone S, Takiguchi M: Structural and functional analysis of monomorphic determinants recognized by monoclonal antibodies reacting with the HLA class I α3 domain. J Immunol 1992, 148:3202–3209.PubMedGoogle Scholar
  32. 32.
    Jefferies WA, MacPherson GG: Expression of the W6/32 HLA epitope by cells of rat, mouse, human and other species: critical dependence on the interaction of specific MHC heavy chains with human or bovine β2-microglobulin. Eur J Immunol 1987; 17:1257–1263.PubMedCrossRefGoogle Scholar
  33. 33.
    Brodsky FM, Parham P: Evolution of HLA antigenic determinants: Species cross reactions of monoclonal antibodies. Immunogenetics 1982; 15:151–166.PubMedCrossRefGoogle Scholar
  34. 34.
    Saper MA, Bjorkman PJ, Wiley DC: Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 Å resolution. J Mol Biol 1991;219:277–319.PubMedCrossRefGoogle Scholar
  35. 35.
    Van Rood JJ, van Leeuwen A: Leukocyte grouping. A method and its application. J Clin Invest 1963;42:1382–1390.CrossRefGoogle Scholar
  36. 36.
    Arnaiz-Villena A, Belvedere M, Decary F, Fotino M, Heise E, Hogan V, Martinetti M, Muller C, Richiardi P, Vicario JL, et al.: Antigen society #15 report (Bw4 and Bw6); in Dupont B (ed): Immunobiology of HLA, vol 1. New York, Springer-Verlag, 1989, pp 214–217.Google Scholar
  37. 37.
    Wan AM, Ennis P, Parham P, Holmes N: The primary structure of HLA-A32 suggests a region involved in formation of the Bw4/ Bw6 epitopes. J Immunol 1986; 137:3671–3674.PubMedGoogle Scholar
  38. 38.
    Lutz CT, Smith KD, Greazel NS, Mace BE, Jensen DA, McCutcheon JA, Goeken NE: Bw4-reactive and Bw6-reactive antibodies recognize multiple distinct HLA structures that partially overlap in the αc-1 helix. J Immunol 1994; 153:4099–4110.PubMedGoogle Scholar
  39. 39.
    Barbosa JA, Santos-Aguado J, Mentzer SJ, Strominger JL, Burakoff SJ, Biro PA: Site-directed mutagenesis of class I HLA genes. Role of glycosylation in surface expression and functional recognition. J Exp Med 1987;166:1329–1350.PubMedCrossRefGoogle Scholar
  40. 40.
    McCutcheon JA, Lutz CT: Mutagenesis around residue 176 on HLA-B*0702 characterizes multiple distinct epitopes for anti-HLA antibodies. Hum Immunol 1992;35:125–131.PubMedCrossRefGoogle Scholar
  41. 41.
    McCutcheon JA, Smith KD, Valenzuela A, Aalbers K, Lutz CT: HLA-B*0702 antibody epitopes are affected indirectly by distant antigen residues. Hum Immunol 1993;36:69–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Bluestone JA, Jameson S, Miller S, Dick R, II: Peptide-induced conformational changes in class I heavy chains alter major histocompatibility complex recognition. J Exp Med 1992; 176:1757–1761.PubMedCrossRefGoogle Scholar
  43. 43.
    Catipovic B, Dal Porto J, Mage M, Johansen TE, Schneck JP: Major histocompatibility complex conformational epitopes are peptide specific. J Exp Med 1992; 176: 1611–1618.PubMedCrossRefGoogle Scholar
  44. 44.
    Hogquist KA, Grandea Lil AG, Bevan MJ: Peptide variants reveal how antibodies recognize major histocompatibility complex class I. Eur J Immunol 1993;23:3028–3036.PubMedCrossRefGoogle Scholar
  45. 45.
    Solheim JC, Carreno BM, Smith JD, Gorka J, Myers NB, Wen Z, Martinko JM, Lee DR, Hansen TH: Binding of peptides lacking consensus anchor residue alters H-2Ld serologie recognition. J Immunol 1993; 151:5387–5397.PubMedGoogle Scholar
  46. 46.
    Wang J, Yu DTY, Fukazawa T, Kellner H, Wen J, Cheng X-K, Roth G, Williams KM, Raybourne RB: A monoclonal antibody that recognizes HLA-B27 in the context of peptides. J Immunol 1994;152:1197–1205.PubMedGoogle Scholar
  47. 47.
    Ajitkumar P, Geier SS, Kesari KV, Borriello F, Nakagawa M, Bluestone JA, Saper MA, Wiley DC, Nathenson SG: Evidence that multiple residues on both the α-helices of the class I MHC molecule are simultaneously recognized by the T cell receptor. Cell 1988;54:47–56.PubMedCrossRefGoogle Scholar
  48. 48.
    Joyce S, Sun R, Nathenson SG: Mapping the orientation of an antigenic peptide bound in the antigen binding groove of H-2Kb using a monoclonal antibody. Biochem Biophys Res Commun 1992; 186:1449–1454.PubMedCrossRefGoogle Scholar
  49. 49.
    Nathenson SG, Geliebter J, Pfaffenbach GM, Zeff RA: Murine major histocompatibility complex class-I mutants: molecular analysis and structure-function implications. Ann Rev Immunol 1986; 4:471–502.CrossRefGoogle Scholar
  50. 50.
    Bluestone JA, Kallyaperumal A, Jameson S, Miller S, Dick R, ll: Peptide-induced conformational changes in class I heavy chains alters allorecognition. J Immunol 1993;151:3943–3953.PubMedGoogle Scholar
  51. 51.
    Sherman LA, Chattopadhyay S, Biggs JA, Dick RF, II, Bluestone JA: Alloantibodies can discriminate class I major histocompatibility complex molecules associated with various endogenous peptides. Proc Natl Acad Sci USA 1993;90:6949–6951.PubMedCrossRefGoogle Scholar
  52. 51a.
    Smith KD, Epperson DF, Lutz CT: Alloreactive cytotoxic T-lymphocyte-defined HLA B7 subtypes differ in peptide antigen presentation. Immunogenetics 1995;43:27–37.CrossRefGoogle Scholar
  53. 52.
    Parham P, Antonelli P, Herzenberg LA, Kipps TJ, Fuller A, Ward FE: Further studies on the epitopes of HLA-B7 defined by murine monoclonal antibodies. Hum Immunol 1986; 15:44–67.PubMedCrossRefGoogle Scholar
  54. 53.
    Smith KD, Lutz CT: Alloreactive T cell recognition of MHC class I molecules: the T cell receptor interacts with limited regions, of the MHC class I long α-helices. J Immunol 1997; 158:2805–2812.PubMedGoogle Scholar
  55. 54.
    Madden DR, Gorga JC, Strominger JL, Wiley DC: The threedimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC. Cell 1992;70: 1035–1048.PubMedCrossRefGoogle Scholar
  56. 54a.
    Reid SW, McAdam S, Smith KJ, Klenerman P, O’Callaghan CA, Harlos K, Jakobsen BK, McMichael AJ, Bell JI, Stuart DI, et al.: Antagonist HIV-1 Gag peptides induce structural changes in HLA B8. J Exp Med 1996;184:2279–2286.PubMedCrossRefGoogle Scholar
  57. 55.
    Rotzschke O, Falk K, Faath S, Ranamensee H-G: On the nature of peptides involved in T cell alloreactivity. J Exp Med 1991; 174:1059–1071.PubMedCrossRefGoogle Scholar
  58. 56.
    Heath WR, Kane KP, Mescher MF, Sherman LA: Alloreactive T cells discriminate among a diverse set of endogenous peptides. Proc Natl Acad Sci USA 1991 ;88:5101–5105.PubMedCrossRefGoogle Scholar
  59. 57.
    Villadangos JA, Galocha B, L’opez de Castro JA: Unusual topology of an HLA-B27 allospecific T cell epitope lacking peptide specificity. J Immunol 1994; 152:2317–2323.PubMedGoogle Scholar
  60. 58.
    Li Y-Y, Smith KD, Shi Y, Lutz CT: Allloreactive anti-HLA-B7 cytolytic T cell clones use restricted T cell receptor genes. Transplantation 1996;62:954–961.PubMedCrossRefGoogle Scholar
  61. 58a.
    Smith KD, Huczko E, Englehard VH, Li Y-Y, Lutz CT: Alloreactive cytotoxic T lymphocytes focus on specific major histocampatibility complex-bound peptides, Transplantation 1997;64:351–359.PubMedCrossRefGoogle Scholar
  62. 59.
    Peccoud J, Dellabona P, Allen P, Elenoist C, Mathis D: Delineation of antigen contact residues on an MHC class II molecule. EMBO J 1990;9:4215–4223.PubMedGoogle Scholar
  63. 60.
    Brown JH, Jardetzky T, Saper MA, Samraoui B, Bjorkman PJ, Wiley DC: A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 1988;332:845–850.PubMedCrossRefGoogle Scholar
  64. 61.
    Lombardi G, Matsui M, Moots R, Aichinger G, Sidhu S, Batchelor R, Frelinger J, Lechler R: Limited regions of the α2-domain α-helix control anti-A2 allorecognition: an analysis using a panel of A2 mutants. Immunogenetics 1991; 34:149–156.PubMedCrossRefGoogle Scholar
  65. 62.
    Moots RJ, Matsui M, Pazmany L, McMichael AJ, Frelinger JA: A cluster of mutations of HLA-A2 α2 helix abolishes peptide recognition by T cells. Immunogenetics 1991; 34:141–148.PubMedCrossRefGoogle Scholar
  66. 63.
    Jaulin C, Casanova J-L, Romero P, Luescher I, Cordey A-S, Maryanski JL, Kourilsky P: Highly diverse T cell recognition of a singlePlasmodium berghei peptide presented by a series of mutant H-2Kd molecules. J Immunol 1992; 149: 3390–3994.Google Scholar
  67. 64.
    Sun R, Shepherd SE, Geier SS, Thomson CT, Sheil JM, Nathenson SG: Evidence that the antigen receptors of cytotoxic T lymphocytes interact with a common recognition pattern on the H-2Kb imolecule. Immunity 1995;3:573–582.PubMedCrossRefGoogle Scholar
  68. 65.
    Braden BC, Souchon H, Eisele J-L, Bently GA, Bhat TN, Navaza J, Poijak RJ: Three-dimensional structures of the free and the antigen-complexed Fab from monoclonal anti-lysozyme antibody D44.1. J Mol Biol 1994:243:767–781.PubMedCrossRefGoogle Scholar
  69. 66.
    Cunningham BC, Wells JA: High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 1989;244:1081–1085.PubMedCrossRefGoogle Scholar
  70. 67.
    de Vos AM, Ultsch M, Kossiakoff AA: Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 1992;255:306–312.PubMedCrossRefGoogle Scholar
  71. 68.
    Somers W, Ultsch M, de Vos AM, Kossiakoff M: The x-ray structure of a growth hormone-prolactin receptor complex. Nature 1994;372:478–481.PubMedCrossRefGoogle Scholar
  72. 69.
    Clackson T, Wells JA: A hot spot of binding energy in a hormonereceptor interface. Science 1995; 267:383–386.PubMedCrossRefGoogle Scholar
  73. 70.
    Ehrich EW, Devaux B, Rock EP, Jorgensen JL, Davis MM, Chien Y-h: T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J Exp Med 1993:178:713–722.PubMedCrossRefGoogle Scholar
  74. 71.
    Chien Y-h, Davis MM: How aβ T-cell receptors “see” peptide-MHC complexes. Immunol Today 1993; 14:597–602.PubMedCrossRefGoogle Scholar
  75. 72.
    Tulip WR, Varghese JN, Webster RG, Laver WG, Coiman PM: Crystal structures of two mutant neuraminidase-antibody complexes with amino acid substitutions in the interface. J Mol Biol 1992;227: 149–159.PubMedCrossRefGoogle Scholar
  76. 73.
    Trinchieri G: Biology of natural killer cells. Adv Immunol 1989;47: 187–376.PubMedGoogle Scholar
  77. 74.
    Ryan JC, Niemi EC, Goldfien RD, Hiserodt JC, Seaman WE: NKRPl, an activating molecule on rat natural killer cells, stimulates phosphoinositide turnover and a rise in intracellular calcium. J Immunol 1991;147:3244–3250.PubMedGoogle Scholar
  78. 75.
    Moretta A, Bottino C, Vitale M, Pencie D, Biassoni R, Mingari MC, Moretta L: Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol 1996;14:619–648.PubMedCrossRefGoogle Scholar
  79. 76.
    Yokoyama WM: Recognition structures on natural killer cells. Curr Opin Immunol 1993;5:67–73.PubMedCrossRefGoogle Scholar
  80. 77.
    Rojo S, Burshtyn DN, Long EO, Wagtmann N: Type I transmembrane receptor with inhibitory function in mouse mast cells and NK cells. J Immunol 1997;158:9–12.PubMedGoogle Scholar
  81. 78.
    Wang LL, Mehta IK, Le Blanc PA, Yokoyama WM: Mouse natural killer cells express gp49B l, a structural homologue of human killer inhibitory receptors. J Immunol 1997; 158:13–17.PubMedGoogle Scholar
  82. 79.
    Perez-Villar JJ, Melero I, Rodriguez A, Carretero M, Aramburu J, Sivori S, Orengo AM, Moretta A, Lopez-Botet M: Functional ambivalence of the Kp43 (CD94) NK cell associated surface antigen. J Immunol 1995;154:5779–5788.PubMedGoogle Scholar
  83. 80.
    Moretta A, Vitale M, Sivori S, Bottino C, Morelli L, Augugliaro R, Barbaresi M, Pende D, Ciccone E, L’opez-Botet M, et al.: Human natural killer cell receptors for HLA-class I molecules. Evidence that the Kp43 (CD94) molecule functions as receptor for HLA-B alleles. J Exp Med 1994:180:545–555.PubMedCrossRefGoogle Scholar
  84. 81.
    Brumbaugh KM, Perez-Villar JJ, Dick CJ, Schoon RA, L’opez-Botet M, Leibson PJ: Clonotypic differences in signaling from CD94 (kp43) on NK cells lead to divergent cellular responses. J Immunol 1996; 157:2804–2812.PubMedGoogle Scholar
  85. 82.
    Lazetic S, Chang C, Houchins JP, Lanier LL, Phillips JH: Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol 1996; 157:474–4745.Google Scholar
  86. 83.
    Phillips JH, Chang C, Mattson J, Gumperz JE, Parham P, Lanier LL: CD94 and a novel associated protein (94AP) form a NK cell receptor involved in the recognition of HLA-A, HLA-B, and H LA-C allotypes. Immunity 1996; 5:163–172.PubMedCrossRefGoogle Scholar
  87. 84.
    Sivori S, Vitale M, Bottino C, Marcenaro E, Sanseverino L, Parolini S, Moretta L, Moretta A: CD94 functions as a natural killer cell inhibitory receptor for different HLA class I alleles: identification of the inhibitory form of CD94 by the use of novel monoclonal antibodies. Eur J Immunol 1996;26:2487–2492.PubMedCrossRefGoogle Scholar
  88. 85.
    Phillips JH, Gumperz JE, Parham P, Lanier LL: Superantigen-dependent, cell mediated cytotoxicity inhibited by MHC class I receptors on lymphocytes. Science 1995;268:403–405.PubMedCrossRefGoogle Scholar
  89. 86.
    D’Andrea A, Chang C, Phillips JH, Lanier LL: Regulation of T-cell lymphokine production by killer cell inhibitory receptcor recognition of self HLA class I alleles. J Exp Med 1996; 184:789–794.PubMedCrossRefGoogle Scholar
  90. 87.
    Mandelboim O, Davis DM, Reyburn HT, Vales-G6mez M, Sheu KG, Pazmany L, Strominger JL: Enhancement of class II-restricted T cell responses by costimulatory NK receptors for class I MHC proteins. Science 1996;274:2097–2100.PubMedCrossRefGoogle Scholar
  91. 88.
    Burshtyn DN, Scharenberg AM, Wagtmann N, Rajagopalan S, Berrada K, Yi T, Kinet J-P, Long EO: Recruitment of tyrosiine phosphatase HCP by the killer cell inhibitory receptor. Immunity 1996;4:77–85.PubMedCrossRefGoogle Scholar
  92. 89.
    Olcese L, Lang P, Vely F, Cambiaggi A, Marguet D, Blery M, Hippen KL, Biassoni R, Moretta A, Moretta L, et al.: Human and mouse killer-cell inhibitory receptors recruit PTPlC and PTPlD protein tyrosine phosphatases. J Immunol 1996;156:4531–4534.PubMedGoogle Scholar
  93. 90.
    Fry AM, Lanier LL, Weiss A: Phoslphotyrosines in the killer cell inhibitory receptor motif of NKB1 are required for negative signaling and for association with protein tyrosine phosphatase lC. J Exp Med 1996; 184:295–300.PubMedCrossRefGoogle Scholar
  94. 91.
    Aramburu J, Balboa MA, Izquierdo M, L’opez-Botet M: A novel functional cell surface dimer (Kp43) expressed by natural killer cells and γδ TCR+ T lymphocytes. II. Modulation of natural killer cytotoxicity by anti-Kp43 monoclonal antibody. J Immunol 1991; 147:714–721.PubMedGoogle Scholar
  95. 92.
    Moretta A, Sivori S, Vitale M, Pende D, Morelli L, Augugliaro R, Bottino C, Moretta L: Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J Exp Med 1995;182:875–884.PubMedCrossRefGoogle Scholar
  96. 93.
    Biassoni R, Cantoni C, Falco M, Verdiani S, Bottino C, Vitale M, Conte R, Poggi A, Moretta A, Moretta L: The human leukocyte antigen (HLA)-C-specific “activatory” or “inhibitory” natural kilier cell receptors display highly homologous extracellular domains but differ in their transmembrane and intracytoplasmic portions. J Exp Med 1996; 183:645–650.PubMedCrossRefGoogle Scholar
  97. 94.
    Colonna M, Samaridis J: Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 1995;268:405–408.PubMedCrossRefGoogle Scholar
  98. 95.
    Wagtmann N, Biassoni R, Cantoni C, Verdiani S, Malnati MS, Vitale M, Bottino C, Moretta L, Moretta A, Long EO: Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra-and intracellular domains. Immunity 1995;2:439–449.PubMedCrossRefGoogle Scholar
  99. 96.
    Colonna M, Brooks KG, Falco M, Ferrara GB, Strominger JL: Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. Science 1993;260:1121–1124.PubMedCrossRefGoogle Scholar
  100. 97.
    Biassoni R, Falco M, Cambiaggi A, Costa P, Verdiani S, Pende D, Conte R, Di Donate C, Parham P, Moretta L: Amino acid substitutions can influence the natural killer (NK)- mediated recognition of HLA-C molecules. Role of serine-77 and lysine-80 in the target cell protection from lysis mediated by “group 2” or “group 1” NK clones. J Exp Med 1995;182:605–609.PubMedCrossRefGoogle Scholar
  101. 98.
    Mandelboim O, Reyburn HT, Vales-Gomez M, Pazmany L, Colonna M, Borsellino G, Strominger JL: Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 inhuman histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J Exp Med 1996;184: 913–922.PubMedCrossRefGoogle Scholar
  102. 99.
    Litwin V, Gumperz J, Parham P, Phillips JH, Lanier LL: NKB1: An NK cell receptor involved in the recognition of polymorphic HLA-B molecules. J Exp Med 1994;180:537–543.PubMedCrossRefGoogle Scholar
  103. 100.
    Gumperz JE, Litwin V, Phillips JH, Lanier LL, Parham P: The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J Exp Med 1995;181:1133–1144.PubMedCrossRefGoogle Scholar
  104. 101.
    Kurago ZB, Smith KD, Lutz CT: NK cell recognition of MHC class I-NK cells are sensitive to peptide-binding groove and surface alpha-helical mutations that affect T cells. J Immunol 1995;154:2631–2641.PubMedGoogle Scholar
  105. 102.
    Malnati MS, Peruzzi M, Parker KC, Biddison WE, Ciccone E, Moretta A, Long EO: Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science 1995;267:1016–1018.PubMedCrossRefGoogle Scholar
  106. 103.
    Peruzzi M, Parker KC, Long EO, Malnati MS: Peptide sequence requirements for the recognition of HLA-B*2705 by specifiic natural killer cells. J Immunol 1996;157:3350–3356.PubMedGoogle Scholar
  107. 104.
    Peruzzi M, Wagtmann N, Long EO: A p70 killer cell inhibitory receptor specific for several HLA-B allotypes discriminates among peptides bound to HLA-B*2705. J Exp Med 1996;184:1585–1590.PubMedCrossRefGoogle Scholar
  108. 105.
    Witte T, Smolyar A, Spoerl R, Goyarts EC, Nathenson SG, Reinherz EL, Change H-C: Major histocompatibility complex recognition by immune receptors: differences among T cell receptors versus antibody interactions with the VSV/H-2Kb complex. Eur J Immunol 1997;27:227–233.PubMedCrossRefGoogle Scholar
  109. 106.
    Gumperz JE, Barber LD, Valiante NM, Percival L, Phillips JH, Lanier LL, Parham P: Conserved and variable residues within the Bw4 motif of HLA-B make separable contributions to recognition of the NKB 1 killer cell-inhibitory receptor. J Immunol 1997;158:5237–5241.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Kelly D. Smith
    • 1
    • 2
  • Zoya B. Kurago
    • 1
    • 3
  • Charles T. Lutz
    • 1
    • 4
  1. 1.Department of PathologyUniversity of Iowa College of MedicineIowa CityUSA
  2. 2.Department of MicrobiologyThe University of Iowa College of MedicineIowa City
  3. 3.Department of Oral Pathology, Medicine, and RadiologyThe University of Iowa College of MedicineIowa City
  4. 4.Programs in Immunology and Molecular BiologyThe University of Iowa College of MedicineIowa City

Personalised recommendations