Advertisement

Immunologic Research

, Volume 16, Issue 1, pp 15–28 | Cite as

Chemokine receptors as fusion cofactors for human immunodeficiency virus type 1 (HIV-1)

  • Benjamin J. Doranz
  • Joanne F. Berson
  • Joseph Rucker
  • Robert W. Doms
Article

Abstract

CD4 is the primary cellular receptor for human immunodeficiency virus type 1 (HIV-1), but is not sufficient for entry of HIV-1 into cells. After a decade-long search, the cellular coreceptors that HIV-1 requires in conjunction with CD4 have been identified as members of the chemokine receptor family of seven-transmembrane G-protein coupled receptors. The discovery of distinct chemokine receptors that support entry of T-cell tropic (CXCR-4) and macrophage tropic HIV-1 strains (CCR-5) explains the differences in cell tropism between viral strains, the inability of HIV-1 to infect most nonprimate cells, and the resistance of a small percentage of the population to HIV-1 infection. Further understanding of the role of chemokine receptors in viral entry may also help explain the evolution of more pathogenic forms of the virus, viral transmission, and HIV-induced pathogenesis. These recent discoveries will aid the development of strategies for combating HIV-1 transmission and spread, the understanding of HIV-1 fusion mechanisms, and the possible development of small animal models for HIV-1 drug and vaccine testing.

Key words

HIV Chemokine receptor CXCR-4 CCR-5 Entry Fusion Cofactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sattentau QJ, Moore JP: Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J Exp Med 1991; 174:407–415.PubMedCrossRefGoogle Scholar
  2. 2.
    Sattentau QJ, Moore JP, Vignaux F, Traincard F, Poignard P: Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J Virol 1993;67:7383–7393.PubMedGoogle Scholar
  3. 3.
    Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R: The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 1986;47:333–348.PubMedCrossRefGoogle Scholar
  4. 4.
    Clapham PR, Blanc D, Weiss RA: Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by simian immunodeficiency virus. Virology 1991;181:703–715.PubMedCrossRefGoogle Scholar
  5. 5.
    Ashorn PA, Berger EA, Moss B: Human immunodeficiency virus envelope glycoprotein/CD4-mediated fusion of nonprimate cells with human cells. J Virol 1990;64: 2149–2156.PubMedGoogle Scholar
  6. 6.
    Dragic T, Picard L, Alizon M: Proteinase-resistant factors in human erythrocyte membranes mediate CD4-dependent fusion with cells expressing human immunodeficiency virus type 1 envelope glycoproteins. J Virol 1995;69:1013–1018.PubMedGoogle Scholar
  7. 7.
    Dragic T, Chameau P, Clavel F, Alizon M: Complementation of murine cells for human immunodeficiency virus envelope/CD4-mediated fusion in human/murine heterokaryons. J Virol 1992;66: 4794–4802.PubMedGoogle Scholar
  8. 8.
    Broder CC, Dimitrov DS, Blumenthal R, Berger EA: The block to HIV-1 envelope glycoprotein-mediated membrane fusion in animal cells expresing human CD4 can be overcome by a human cell component(s). Virology 1993;193: 483–491.PubMedCrossRefGoogle Scholar
  9. 9.
    Veenstra J, Schuurman R, Cornelissen M, van’t Wout AB, Boucher CAB, Schuitemaker H, Goudsmit J, Coutinho RA: Transmission of zidovudine-resistant human immunodeficiency virus type 1 variants following deliberate injection of blood from a patient with AIDS: characteristics and natural history of the virus. Clin Infect Dis 1995; 21:556–560.PubMedGoogle Scholar
  10. 10.
    Connor RI, Ho DD: Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. J Virol 1994;68:44010–4408.Google Scholar
  11. 11.
    van’t Wout AB, Kootstra NA, Mulder-Kampinga GA, Albrecht van Lent N, Scherpbier HJ, Veenstra J, Boer K, Coutinho RA, Miedema F, Schuitemaker H: Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J Clin Invest 1994;94:2060–2067.Google Scholar
  12. 12.
    Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA, Ho DD: Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 1993; 261:1179–1181.PubMedCrossRefGoogle Scholar
  13. 13.
    Koot M, Keet IP, Vos AH, de Goede RE, Roos MT, Coutinho RA, Miedema F, Schellekens PT, Tersmette M: Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med 1993; 118:681–688.PubMedGoogle Scholar
  14. 14.
    Hildreth JE, Orentas RJ: Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science 1989; 244:1075–1078.PubMedCrossRefGoogle Scholar
  15. 15.
    Avril LE, DiMartino-Ferrer M, Barin F, Gauthier F: Interaction between a membrane-associated serine proteinase of U-937 monocytes and peptides from the V3 loop of the human immunodeficiency virus type 1 (HIV-1) gp 120 envelope glycoprotein. FEBS Lett 1993;317:167–172.PubMedCrossRefGoogle Scholar
  16. 16.
    Callebaut C, Krust B, Jacotot E, Hovanessian AG: T-cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science 1993;262:2045–2050.PubMedCrossRefGoogle Scholar
  17. 17.
    Sato AI, Balamuth FB, Ugen KE, Williams WV, Weiner DB: Identification of CD7 glycoprotein as an accessory molecule in HIV-1-mediated syncytium formation and cell-free infection. J Immunol 1994;152:5142–5152.PubMedGoogle Scholar
  18. 18.
    Dukes CS, Yu Y, Rivadeneira ED, Sauls DL, Liao HX, Haynes BF, Weinberg JB: Cellular CD44S as a determinant of human immunodeficiency virus type 1 infection and cellular tropism. J Virol 1995; 69:4000–4005.PubMedGoogle Scholar
  19. 19.
    Harouse JM, Bhat S, Spitalnik SL, Laughlin M, Stefano K, Silberberg DH, Gonzalez-Scarano F: Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science 1991;253:320–323.PubMedCrossRefGoogle Scholar
  20. 20.
    Horuk R: Molecular properties of the chemokine receptor family. Trends Pharm Sci 1994;15:159–165.PubMedCrossRefGoogle Scholar
  21. 21.
    Schall TJ, Bacon KB: Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol 1994;6:865–873.PubMedCrossRefGoogle Scholar
  22. 22.
    Kelvin DJ, Michiel DF, Johnston JA, Lloyd AR, Sprenger H, Oppenheim JJ, Wang J-M: Chemokines and sepentines: the molecular biology of chemokine receptors. J Leukocyte Biol 1993;54:604–612.PubMedGoogle Scholar
  23. 23.
    Cocchi F, De Vico AL, GarzinoDemo A, Arya SK, Gallo RC, Lusso P: Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995;270:1811–1815.PubMedCrossRefGoogle Scholar
  24. 24.
    Feng Y, Broder CC, Kennedy PE, Berger EA: HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G proteincoupled receptor. Science 1996; 272:872–877.PubMedCrossRefGoogle Scholar
  25. 25.
    Berson JF, Long D, Doranz BJ, Rucker J, Jirik FR, Doms RW: A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol 1996;70:6288–6295.PubMedGoogle Scholar
  26. 26.
    Herzog H, Hort YJ, Shine J, Selbie LA: Molecular cloning, characterization, and localization of the human homolog to the reported bovine NPY Y3 receptor: lack of NPY binding and activation. DNA Cell Biol 1993; 12:465–471.PubMedCrossRefGoogle Scholar
  27. 27.
    Jazin EE, Yoo H, Blomqvist AG, Yee F, Weng G, Walker MW, Salon J, Larhammar D, Wahlestedt C: A proposed bovine neuropeptide Y (NPY) receptor cDNA clone, or its human homologue, confers neither NPY binding sites nor NPY responsiveness on transfected cells. Regul Pept 1993;47: 247–258.PubMedCrossRefGoogle Scholar
  28. 28.
    Federsppiel B, Melhado IG, Duncan AMV, Delaney A, Schappert K, Clark-Lewis I, Jirik FR: Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen. Genomics 1993;16:707–712.PubMedCrossRefGoogle Scholar
  29. 29.
    Neote K, DiGregorio D, Mak JY, Horuk R, Schall TJ: Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 1993;72: 415–425.PubMedCrossRefGoogle Scholar
  30. 30.
    Nomura H, Nielsen BW, Matsushima K: Molecular cloning of cDNAs encoding a LD78 receptor and putative leukocyte chemotactic peptide receptors. Int Immunol 1993;5:1239–1249.PubMedCrossRefGoogle Scholar
  31. 31.
    Loetscher M, Geiser T, O’Reilly T, Zwahlen R, Baggiolini M, Moser B: Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem 1994;269:232–237.PubMedGoogle Scholar
  32. 32.
    Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA: The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 1996;382:829–833.PubMedCrossRefGoogle Scholar
  33. 33.
    Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, ArenzanaSeisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legier DF, Loetscher M, Baggiolini M, Moser B: The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-lineadapted HIV-1. Nature 1996;382: 833–835.PubMedCrossRefGoogle Scholar
  34. 34.
    Nagasaw T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T: Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996;382:635–638.CrossRefGoogle Scholar
  35. 35.
    Probst WC, Snyder LA, Schuster DI, Brosius J, Sealfon SC: Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 1992;ll:l-20.Google Scholar
  36. 36.
    Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M: Molecular cloning and functional expression of anew human CC-chemokine receptor gene. Biochemistry 1996; 35:3362–3367.PubMedCrossRefGoogle Scholar
  37. 37.
    Rucker J, Samson M, Doranz BJ, Libert F, Berson JF, Yi Y, Smyth RJ, Collman RG, Broder CC, Vassart G, Doms RW, Parmentier M: Regions in β-chemokine receptors CCR5 and CCR2b that determine HIV-1 cofactor specificity. Cell 1996;87:437–446.PubMedCrossRefGoogle Scholar
  38. 38.
    Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA: CC CKR5: A RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272:1955–1958.PubMedCrossRefGoogle Scholar
  39. 39.
    Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, DiMarzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR: Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996;381:661–666.PubMedCrossRefGoogle Scholar
  40. 40.
    Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA: HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CCCKR-5. Nature 1996;381:667–673.PubMedCrossRefGoogle Scholar
  41. 41.
    Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW: A dual-tropic primary HIV-1 isolate that uses fusin and the βchemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 1996;85:1149–1158.PubMedCrossRefGoogle Scholar
  42. 42.
    Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J: The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996;85:1135–1148.PubMedCrossRefGoogle Scholar
  43. 43.
    Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, Miller LH: A receptor for the malarial parasitePlasmodium vivax: the erythrocyte chemokine receptor. Science 1993;261:1182–1184.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhao-hai L, Zi-xuan W, Horuk R, Hesselgesser J, Yan-chun L, Hadley TJ, Peiper SC: The promiscuous chemokine binding profile of the Duffy antigen/receptor for chemokines is primarily localized to sequences in the amino-terminal domain. J Biol Chem 1995;270: 26, 239–26,245.Google Scholar
  45. 45.
    Hwang SS, Boyle TJ, Lyerly HK, Cullen BR: Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 1991 ;253:71–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Kim FM, Kolson DL, Balliet JW, Srinivasan A, Collman RG: V3-independent determinants of macrophage tropism in a primary human immunodeficiency virus type 1 isolate. J Virol 1995;69:1755–1761.PubMedGoogle Scholar
  47. 47.
    Weller PF, Marshall WL, Lucey DR, Rand TH, Dvorak AM, Finberg RW: Infection, apoptosis, and killing of mature human eosinophils by human immunodeficiency virus-1. Am J Respir Cell Mol Biol 1995;13:610–620.PubMedGoogle Scholar
  48. 48.
    Freedman AR, Gibson FM, Fleming SC, Spry CJ, Griffin GE: Human immunodeficiency virus infection of eosinophils in human bone marrow cultures. J Exp Med 1991;174:1661–1664.PubMedCrossRefGoogle Scholar
  49. 49.
    Loetscher P, Seitz M, Baggiolini M, Moser B: Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J Exp Med 1996;184:569–577.PubMedCrossRefGoogle Scholar
  50. 50.
    Paxton WA, Martin SR, Tse D, O’Brien TR, Skurnick J, VanDe-vanter NL, Padian N, Braun JF, Kotier DP, Wolinsky SM, Koup RA: Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposures. Nature Med 1996;2:412–417.PubMedCrossRefGoogle Scholar
  51. 51.
    Donegan E, Stuart M, Niland JC, Sacks HS, Azen SP, Dietrich SL, Faucett C, Fletcher MA, Kleinman SH, Operskalski EA, Perkins HA, Pindyck J, Schiff ER, Stites DP, Tomasulo PA, Mosley JW, Transfusion Safety Group: Infection with human immunodeficiency virus type 1 (HIV-1) among recipients of antibody-positive blood donations. Ann Intern Med 1990; 113: 733–739.PubMedGoogle Scholar
  52. 52.
    Detels R, Liu Z, Hennessey K, Kan J, Visscher BR, Taylor JMG, Hoover DR, Rinaldo CR, Phair JP, Saah AJ, Giorgi JV: Resistance to HIV-1 infection. J Acquired Immune Defic Syndrome 1994;7:1263–1269.Google Scholar
  53. 53.
    Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR: Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996;86: 367–377.PubMedCrossRefGoogle Scholar
  54. 54.
    Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoum’eroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M: Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382:722–725.PubMedCrossRefGoogle Scholar
  55. 55.
    Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study, O’Brien SJ: Genetic resistance of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 1996;273:1856–1862.PubMedCrossRefGoogle Scholar
  56. 56.
    Chaudhuri A, Polyakova J, Zbrzezna V, Williams K, Gulati S, Pogo AO: Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for thePlasmodium vivax malaria parasite. Proc Natl Acad Sci USA 1993;90:10, 793–10,797.Google Scholar
  57. 57.
    Mallison G, Soo KS, Schall TJ, Pisacka M, Anstee DJ: Mutations in the erythrocyte chemokine receptor (Duffy) gene: the molecular basis of the Fya/Fyb antigens and identification of a deletion in the Duffy gene of an apparently healthy individual with the Fy(a-b-) phenotype. Br J Haematol 1995;90: 823–829.Google Scholar
  58. 58.
    Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC: Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 1995;332:228–232.PubMedCrossRefGoogle Scholar
  59. 59.
    Learmont J, Tindall B, Evans L, Cunningham A, Cunningham P, Wells J, Penny R, Kaldor J, Cooper DA: Long-term symptomless HIV-1 infection in recipients of blood products from a single donor. Lancet 1992;340:863–867.PubMedCrossRefGoogle Scholar
  60. 60.
    Travers K, Mboup S, Marlink R, Gueye-Nidaye A, Siby T, Thior I, Traore I, Dieng-Sarr A, Sankale JL, Mullins C: Natural protection against HIV-1 infection provided by HIV-2. Science 1995;5217: 1612–1615.CrossRefGoogle Scholar
  61. 61.
    Cao Y, Qin L, Zhang L, Safrit J, Ho DD: Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med 1995;332:201–208.PubMedCrossRefGoogle Scholar
  62. 62.
    Chung CW, Cooke RM, Proudfoot AE, Wells TN: The three-dimensional solution structure of RANTES. Biochemistry1995;34:9307–9314.PubMedCrossRefGoogle Scholar
  63. 63.
    Lodi PJ, Garrett DS, Kuszewski J, Tsang ML, Weatherbee JA, Leonard WJ, Gronenborn AM, Clore GM: High-resolution solution structure of the β chemokine hMILP-1β by multidimensional NMR. Science 1994;263:1762–1767.PubMedCrossRefGoogle Scholar
  64. 64.
    Clubb RT, Omichinski JG, Clore GM, Gronenborn AM: Mapping the binding surface of interleukin-8 complexed with an N-terminal fragment of the type 1 human interleukin-8 receptor. FEBS Lett 1994; 338:93–97.PubMedCrossRefGoogle Scholar
  65. 65.
    Ahuja SK, Lee JC, Murphy PM: CXC chemokines bind to unique sets of selectivity determinants that can function independently and are broadly distributed on multiple domains of human interleukin-8 receptor B. J Biol Chem 1996;271:225–232.PubMedCrossRefGoogle Scholar
  66. 66.
    Gayle RB, Sleath PR, Srinivason S, Birks CW, Weerawarna KS, Cerretti DP, Kozlosky CJ, Nelson N, Bos TV, Beckmann MP: Importance of the amino terminus of the interleukin-8 receptor in ligand interactions. J Biol Chem 1993; 268:7283–7289.PubMedGoogle Scholar
  67. 67.
    Hebert CA, Chuntharapai A, Smith M, Colby T, Kim J, Horuk R: Partial functional mapping of the human interleukin-8 type A receptor. J Biol Chem 1993;268: 18, 549–18,553.Google Scholar
  68. 68.
    Monteclaro FS, Charo IF: The amino-terminal extracellular domain of the MCP-1 receptor, but not the RANTES/MIP-1α receptor, confers chemokine selectivity. J Biol Chem 1996;271:19, 084–19,092.Google Scholar
  69. 69.
    Siciliano SJ, Rollins TE, DeMartino J, Konteatis Z, Malkowitz L, VanRiper G, Bondy S, Rosen H, Springer MS: Two-site binding of C5a by its receptor: an alternative binding paradigm for G protein-coupled receptors. Proc Natl Acad Sci USA 1994;91: 1214–1218.PubMedCrossRefGoogle Scholar
  70. 70.
    DeMartino JA, Riper GV, Siciliano SJ, Molineaux CJ, Konteatis ZD, Rosen H, Springer MS: The amino terminus of the human C5a receptor is required for high affinity C5a binding and for receptor activation by C5a but not C5a analogs. J Biol Chem 1994;269: 14, 446–14,450.Google Scholar
  71. 71.
    Golding H, Dimitrov DS, Manischewitz J, Broder CC, Robinson J, Fabian S, Littman DR, Lapham CK: Phorbol ester-induced down modulation of tailless CD4 receptors requires prior binding of gp120 and suggests a role for accessory molecules. J Virol 1995; 69:6140–6148.PubMedGoogle Scholar
  72. 72.
    Golding H, Manischewitz J, Vujcic L, Blumenthal R, Dimitrov DS: The phorbol ester phorbol myristate acetate inhibits human immunodeficiency virus type 1 envelope-mediated fusion by modulating an accessory component(s) in CD4-expressing cells. J Virol 1994;68:1962–1969.PubMedGoogle Scholar
  73. 73.
    Wahl SM, Allen JB, Gartner S, Orenstein JM, Popovic M, Chenoweth DE, Arthur LO, Farrar WL, Wahl LM: HIV-1 and its envelope glycoprotein down-regulate chemotactic ligand receptors and chemotactic function of peripheral blood monocytes. J Immunol 1989; 142:3553–3559.PubMedGoogle Scholar
  74. 74.
    Schmidtmayerova H, Nottet HSLM, Nuovo G, Raabe T, Flanagan CR, Dubrovsky L, Gendelman HE, Cerami A, Bukrinsky M, Sherry B: Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications forrecruitment of leukocytes into brain and lymph nodes. Proc Natl Acad Sci USA 1996;93:700–704.PubMedCrossRefGoogle Scholar
  75. 75.
    Canque B, Rosenzwajg M, Gey A, Tartour E, Fridman WH, Gluckman JC: Macrophage inflammatory protein-1-alpha is induced by human-immunodeficiency-virus infection of monocyte-derived macrophages. Blood 1996;87: 2011–2019.PubMedGoogle Scholar
  76. 76.
    Borghi P, Fantuzzi L, Varano B, Gessani S, Puddu P, Conti L, Capobianchi MR, Ameglio F, Belardelli F: Induction of interleukin-10 by human immunodeficiency virus type 1 and its gp120 protein in human monocytes/ macrophages. J Virol 1995;69: 1284–1287.PubMedGoogle Scholar
  77. 77.
    Seitz M, Loetscher P, Dewald B, Towbin H, Gallati H, Baggiolini M: Interleukin-10 differentially regulates cytokine inhibitor and chemokine release from blood mononuclear cells and fibroblasts. Eur J Immunol 1995;25:1129–1132.PubMedCrossRefGoogle Scholar
  78. 78.
    Schols D, DeClerco E: Human immunodeficiency virus type 1 gp120 induces anergy in human peripheral blood lymphocytes by inducing interleukin-10 production. J Virol 1996;70:4953–4960.PubMedGoogle Scholar
  79. 79.
    Schmidtmayerova H, Sherry B, Bukrinsky M: Chemokines and HIV replication. Nature 1996; 382:767.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Benjamin J. Doranz
    • 1
  • Joanne F. Berson
    • 1
  • Joseph Rucker
    • 1
  • Robert W. Doms
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphia

Personalised recommendations