Characterization of a Thermotolerant and Alkalotolerant Xylanase from a Bacillus sp.

  • Susana Marques
  • Luís Alves
  • Sandra Ribeiro
  • Francisco M. Gírio
  • M. T. Amaral-Collaço
Original Articles

Abstract

In a recent screening for thermophilic bacteria from Azores hot springs, a Bacillus sp strain 3M, exhibiting cellulase-free extracellular xylanolitic activity, was isolated. Further enzyme characterization from liquid cultures grown on birchwood xylan revealed that the endo-l,4-βxylanase retains 100% of activity for at least 3 d at 55°C. At 80°C, it retains 47% of its maximal activity, and the enzyme is still active at 90°C. The optimum pH of the enzyme has a broad pH range, between 6.0 and 7.5, and it is remarkably active for the alkaline region, exhibiting 89% of relative activity at pH 9.O. The enzyme was partially inactivated by different divalent metal ions. Because of its tolerance for high temperature and pH conditions, and the absence of contaminating cellulase activity, the xylanase produced byBacillus sp 3M appears to be attractive for use in the pulp and paper industry. Indeed, the efficiency of the enzyme application to the kraftEucalyptus pulp was studied for bleaching pretreatment, resulting in a moderate increase of pulp bleachability.

Index Entries

Thermotolerant bacteria alkalotolerant bacteria Bacillus extracellular hydrolases xylanase xylan bleachability enzymatic pulp prebleaching 

References

  1. 1.
    Viikari, L., Kantelinen, A., Sundquist, J., and Linko, M. (1994),FEMS Microbiol. Rev. 13, 335–350.CrossRefGoogle Scholar
  2. 2.
    Khasin, A., Alchanati, L., and Shoham, Y. (1993),Appl. Environ. Microbiol. 59, 1725–1730.Google Scholar
  3. 3.
    Wong, K. K. Y., Tan, L. U. L., and Saddler, J. N. (1988),Microbiol. Rev. 52, 305–317.Google Scholar
  4. 4.
    Nakamura, S., Nakai, R., Wakabayashi, K., Ishiguro, Y., Aono, R., and Hokikoshi, K. (1994),Biosci. Biotech. Biochem. 58, 78–81.CrossRefGoogle Scholar
  5. 5.
    Vishniac, W., and Santer, M. (1957),Bacteriol. Rev. 21, 95–213.Google Scholar
  6. 6.
    Bailey, M. J., Biely, P., and Poutanen, K. (1992),J. Biotechnol. 23, 257–270.CrossRefGoogle Scholar
  7. 7.
    Ghose, T. K. (1987),Pure Appl. Chem. 59, 257–268.CrossRefGoogle Scholar
  8. 8.
    Li, X.-L., Zhuang, Z.-Q., Dean, J. F. D., Ericksson, K.-E., and Ljungdahl, L. G. (1993),Appl. Environ. Microbiol. 59, 3212–3218.Google Scholar
  9. 9.
    Lowry, O. H., Rosebrough, N. J., Farr, A. C., and Randall, R. J. (1951),J. Biol. Chem. 193, 265–275.Google Scholar
  10. 10.
    Miller, G. L. (1959),Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  11. 11.
    Yang, V. W., Zhuang, Z., Elegir, G., and Jeffries, T. W. (1995),J. Ind. Microbiol. 15, 434–441.CrossRefGoogle Scholar
  12. 12.
    Hortling, B., Korhonen, M., Buchert, M., Sundqvist, M., and Viikari, L. (1994),Holzforschung 48, 441–446.CrossRefGoogle Scholar
  13. 13.
    Gliese, Th., Kleemann, S., and Fischer, K. (1996), inBiotechnology in the Pulp and Paper Industry (Srebotnik, E. and Messner, K., eds.), Facultas-Universitatsverlag, Vienna, pp. 63–67.Google Scholar
  14. 14.
    Senior, D. J., Mayers, P. R., Miller, D., Sutcliffe, R., Tan, L., and Saddler, J. N. (1988),Biotechnol. Lett. 12, 907–912.CrossRefGoogle Scholar
  15. 15.
    Lee, H., Biely, P., Latta, R. K., Barbosa, M. F. S., and Schneider, H. (1996),Appl. Environ. Microbiol. 2, 320–324.Google Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Susana Marques
    • 1
  • Luís Alves
    • 1
  • Sandra Ribeiro
    • 1
  • Francisco M. Gírio
    • 1
  • M. T. Amaral-Collaço
    • 1
  1. 1.INETI, IBQTA-Deportamento de BiotecnologiaU. Microbiologia Industrial e Bioprocessos, Azinhoga dos lameirosPortugal

Personalised recommendations