Israel Journal of Mathematics

, Volume 128, Issue 1, pp 205–220 | Cite as

Pappus type theorems for hypersurfaces in a space form

  • M. Carmen Domingo-Juan
  • Ximo Gual
  • Vicente Miquel


In order to get further insight on the Weyl’s formula for the volume of a tubular hypersurface, we consider the following situation. Letc(t) be a curve in a space formM λ n of sectional curvature λ. LetP 0 be a totally geodesic hypersurface ofM λ n throughc(0) and orthogonal toc(t). LetC 0 be a hypersurface ofP 0. LetC be the hypersurface ofM λ n obtained by a motion ofC 0 alongc(t). We shall denote it byC PorC Fif it is obtained by a parallel or Frenet motion, respectively. We get a formula for volume(C). Among other consequences of this formula we get that, ifc(0) is the centre of mass ofC 0, then volume(C) ≥ volume(C),P),and the equality holds whenC 0 is contained in a geodesic sphere or the motion corresponds to a curve contained in a hyperplane of the Lie algebraO(n−1) (whenn=3, the only motion with these properties is the parallel motion).


Sectional Curvature Space Form Parallel Motion Geodesic Sphere Frenet Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BK]
    P. Buser and H. Karcher,Gromov’s almost flat manifolds, Astérisque81 (1981).Google Scholar
  2. [dC]
    M. do Carmo,Riemannian Geometry, Birkhäuser, Boston, 1992.MATHGoogle Scholar
  3. [GG]
    W. Goodman and G. Goodman,Generalizations of the theorems of Pappus, The American Mathematical Monthly76 (1969), 355–366.MATHCrossRefMathSciNetGoogle Scholar
  4. [Gr]
    A. Gray,Tubes, Addison-Wesley, New York, Reading, 1990.MATHGoogle Scholar
  5. [GM]
    A. Gray and V. Miquel,On Pappus-type theorems on the volume in space forms, Annals of Global Analysis and Geometry18 (2000), 241–254.MATHCrossRefMathSciNetGoogle Scholar
  6. [He]
    E. Heintze,Extrinsic upper bounds for λ 1,Mathematische Annalen280 (1988), 389–402.MATHCrossRefMathSciNetGoogle Scholar
  7. [Hi]
    M. W. Hirsch,Differential Topology, Springer-Verlag, New York, Berlin, 1976.MATHGoogle Scholar
  8. [Ka]
    H. Karcher,Riemannian center of mass and mollifier smoothing, Communications on Pure and Applied Mathematics30 (1977), 509–541.MATHCrossRefMathSciNetGoogle Scholar
  9. [NB]
    J. J. Nuño-Ballesteros,Bitangency properties of generic closed curves in ℝ n,inReal and Complex Singularities (J. W. Bruce and F. Tari, eds.), Research Notes in Mathematics, Vol. 412, Chapman and Hall/CRC, Boca Raton, London, 2000, pp. 188–201.Google Scholar
  10. [Sp]
    M. Spivak,A Comprehensive Introduction to Differential Geometry, Vol. 4, Publish or Perish, Boston, 1975.MATHGoogle Scholar
  11. [Wa]
    C. T. C. Wall,Geometric properties of generic differentiable manifolds, inGeometry and Topology, Rio de Janeior, July 1976 (J. Palis and M. do Carmo, eds.), Lecture Notes in Mathematics597, Springer-Verlag, Berlin, 1977, pp. 707–774Google Scholar
  12. [We]
    H. Weyl,On the volume of tubes, American Journal of Mathematics61 (1939), 461–472.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2002

Authors and Affiliations

  • M. Carmen Domingo-Juan
    • 1
  • Ximo Gual
    • 2
  • Vicente Miquel
    • 3
  1. 1.Departamento de Economía Financiera y MatemáticaUniversidad de ValenciaValenciaSpain
  2. 2.Departamento de MatemáticasUniversitat Jaume ICastellónSpain
  3. 3.Departamento de Geometría y TopologíaUniversidad de ValenciaBurjasot (Valencia)Spain

Personalised recommendations