Israel Journal of Mathematics

, Volume 128, Issue 1, pp 205–220 | Cite as

Pappus type theorems for hypersurfaces in a space form

  • M. Carmen Domingo-Juan
  • Ximo Gual
  • Vicente Miquel
Article

Abstract

In order to get further insight on the Weyl’s formula for the volume of a tubular hypersurface, we consider the following situation. Letc(t) be a curve in a space formMλn of sectional curvature λ. LetP0 be a totally geodesic hypersurface ofMλn throughc(0) and orthogonal toc(t). LetC0 be a hypersurface ofP0. LetC be the hypersurface ofMλn obtained by a motion ofC0 alongc(t). We shall denote it byCPorCFif it is obtained by a parallel or Frenet motion, respectively. We get a formula for volume(C). Among other consequences of this formula we get that, ifc(0) is the centre of mass ofC0, then volume(C) ≥ volume(C),P),and the equality holds whenC0 is contained in a geodesic sphere or the motion corresponds to a curve contained in a hyperplane of the Lie algebraO(n−1) (whenn=3, the only motion with these properties is the parallel motion).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BK]
    P. Buser and H. Karcher,Gromov’s almost flat manifolds, Astérisque81 (1981).Google Scholar
  2. [dC]
    M. do Carmo,Riemannian Geometry, Birkhäuser, Boston, 1992.MATHGoogle Scholar
  3. [GG]
    W. Goodman and G. Goodman,Generalizations of the theorems of Pappus, The American Mathematical Monthly76 (1969), 355–366.MATHCrossRefMathSciNetGoogle Scholar
  4. [Gr]
    A. Gray,Tubes, Addison-Wesley, New York, Reading, 1990.MATHGoogle Scholar
  5. [GM]
    A. Gray and V. Miquel,On Pappus-type theorems on the volume in space forms, Annals of Global Analysis and Geometry18 (2000), 241–254.MATHCrossRefMathSciNetGoogle Scholar
  6. [He]
    E. Heintze,Extrinsic upper bounds for λ 1,Mathematische Annalen280 (1988), 389–402.MATHCrossRefMathSciNetGoogle Scholar
  7. [Hi]
    M. W. Hirsch,Differential Topology, Springer-Verlag, New York, Berlin, 1976.MATHGoogle Scholar
  8. [Ka]
    H. Karcher,Riemannian center of mass and mollifier smoothing, Communications on Pure and Applied Mathematics30 (1977), 509–541.MATHCrossRefMathSciNetGoogle Scholar
  9. [NB]
    J. J. Nuño-Ballesteros,Bitangency properties of generic closed curves in ℝ n,inReal and Complex Singularities (J. W. Bruce and F. Tari, eds.), Research Notes in Mathematics, Vol. 412, Chapman and Hall/CRC, Boca Raton, London, 2000, pp. 188–201.Google Scholar
  10. [Sp]
    M. Spivak,A Comprehensive Introduction to Differential Geometry, Vol. 4, Publish or Perish, Boston, 1975.MATHGoogle Scholar
  11. [Wa]
    C. T. C. Wall,Geometric properties of generic differentiable manifolds, inGeometry and Topology, Rio de Janeior, July 1976 (J. Palis and M. do Carmo, eds.), Lecture Notes in Mathematics597, Springer-Verlag, Berlin, 1977, pp. 707–774Google Scholar
  12. [We]
    H. Weyl,On the volume of tubes, American Journal of Mathematics61 (1939), 461–472.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2002

Authors and Affiliations

  • M. Carmen Domingo-Juan
    • 1
  • Ximo Gual
    • 2
  • Vicente Miquel
    • 3
  1. 1.Departamento de Economía Financiera y MatemáticaUniversidad de ValenciaValenciaSpain
  2. 2.Departamento de MatemáticasUniversitat Jaume ICastellónSpain
  3. 3.Departamento de Geometría y TopologíaUniversidad de ValenciaBurjasot (Valencia)Spain

Personalised recommendations