Biological Trace Element Research

, Volume 55, Issue 3, pp 231–239

Biochemistry of tellurium

  • Andrew Taylor
Article

Abstract

Tellurium (Te) demonstrates properties similar to those of elements known to be toxic to humans, and has applications in industrial processes, which are rapidly growing in importance and scale. It is relevant, therefore, to consider the tellurium physiology, toxicity, and methods for monitoring the element in biological and environmental specimens. Animal studies suggest that up to 25% of orally administered tellurium is absorbed in the gut. There is a biphasic elimination from the circulation with loss of about 50% within a short period,t1/2=0.81 d, and slower elimination of the residual Te,t1/2=12.9 d. Following a single ip, injection the largest proportion is in the kidney and bone, but with repeated oral administration, Te is found in the heart ≫ kidney, spleen, bone, and lung. Formation of dimethyl telluride is a characteristic feature of exposure, and gives a pungent garlic-like odor to breath, excreta, and the viscera. The main target sites for Te toxicity are the kidney, nervous system, skin, and the fetus (hydrocephalus). Te can, be reliable measured in different specimens by several analytical techniques. Recent work has employed hydride generation atomic absorption spectrometry. Topics for further investigation are proposed.

Index Entries

Tellurium 127mTe metabolism tissue distribution toxicity teratogenicity garlic odor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. D. Clayton and F. E. Clayton, eds.,Patty's Industrial Hygiene and Toxicology, John Wiley, Chichester (1981).Google Scholar
  2. 2.
    A. Taylor, Biochemistry of tellurium, inNew Perspectives in the Research of Hardly Known Trace Elements, I. Pais, ed., Budapest University of Horticulture and Food Science, Budapest, Hungary, pp. 147–158 (1994).Google Scholar
  3. 3.
    R. H. De Maeio, Tellurium. I. The toxicity of ingested elementary tellurium for rats and rat tissues,J. Ind. Hyg. Toxicol. 28, 229–232 (1946).Google Scholar
  4. 4.
    J. G. Hollins, The metabolism of tellurium in rats,Health Phys. 17, 497–505 (1969).PubMedCrossRefGoogle Scholar
  5. 5.
    E. A. Cerwenka and W. C. Cooper, Toxicology of selenium and tellurium and their compounds.Arch. Environ. Health 3, 189–200 (1961).PubMedGoogle Scholar
  6. 6.
    H. Kilpatrick, The absorption, distribution and excretion of tellurium dioxide. MSc Thesis, University of Surrey (1994).Google Scholar
  7. 7.
    W. F. Agnew, Transplacental uptake of 127m-Tellurium studied by whole-body autoradiography.Teratology 6, 331–338 (1972).PubMedCrossRefGoogle Scholar
  8. 8.
    A. J. Larner, Biological effects of tellurium: A review.Trace Elements Electrolytes 12, 26–31 (1995).Google Scholar
  9. 9.
    W. Reisert, The so-called bismuth breath.Am. J. Pharmacol. 56, 177–180 (1884).Google Scholar
  10. 10.
    K. W. Franke and A. L. Moxon, The toxicity of orally ingested arsenic, selenium, tellurium, vanadium and molybdenum.J. Pharmacol. 61, 89–102 (1937).Google Scholar
  11. 11.
    H. H. Steinberg, S. C. Massari, A. C. Miner, and R. Rink, Industrial exposure to tellurium: Atmospheric studies and clinical evaluation.J. Ind. Hyg. Toxicol. 24, 183–192. (1942).Google Scholar
  12. 12.
    B. Welz, M. S. Wolynetz, and M. Verlinden, Interlaboratory trial on the determination of selenium in lyophilised human serum, blood and urine using hydride generation atomic absorption spectrometry,Pure Appl. Chem. 59, 927–936 (1987).CrossRefGoogle Scholar
  13. 13.
    HSE, Arsenic and inorganic compounds of arsenic in air, MDHS 41, HMSO, London (1984).Google Scholar
  14. 14.
    A. Taylor and H. Kilpatrick, Measurement of tellurium in environmental and biological samples by hydride generation atomic absorption spectrometry, inMetal Elements in Environment, Medicine and Biology, Z. Garban and G. Daranyi, eds, Timisoara University of Agricultural Sciences Timisoara, Romania, pp. 231–234 (1995).Google Scholar
  15. 15.
    R. A. Newman, S. Osborn, and Z. H. Siddik, Determination of tellurium in biological fluids by means of electrothermal vaporization-inductively coupled plasma-mass spectrometry,Clin. Chim. Acta. 179, 191–196 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Taylor, S. Branch, H. Crews, D. J. Halls, and M White, Atomic Spectrometry Update. Clinical and biological materials, foods and beverages,J. Anal. Atomic Spectrom. 11, 103R-186R (1996).CrossRefGoogle Scholar
  17. 17.
    P. Lampert, F. Garro, and A. Pentschew, Tellurium neuropathy,Acta Neuropathol. 15, 308–317 (1970).PubMedCrossRefGoogle Scholar
  18. 18.
    L. D. Mead and W. J. Gies, Physiological and toxicological effects of tellurium compounds,Am. J. Physiol. 5, 104–149 (1901).Google Scholar
  19. 19.
    R. H. De Maeio and W. W. Jetter, Tellurium. III. The toxicity of ingested tellurium dioxide for rats.J. Ind. Hyg. Toxicol. 30, 53–58 (1948).Google Scholar
  20. 20.
    M. L. Amdur, Tellurium dioxide. An animal study in acute toxicity,AMA Arch. Ind. Health 17, 665–667 (1958).PubMedGoogle Scholar
  21. 21.
    H. A. Schroeder and M. Mitchener, Selenium and tellurium in rats: Effect on growth, survival and tumors,J. Nutr. 101, 1531–1540 (1971).PubMedGoogle Scholar
  22. 22.
    H. A. Schroeder and M. Mitchener, Selenium and tellurium in mice. Effects on growth, survival and tumors,Arch. Environ. Health,24, 66–71 (1972).PubMedGoogle Scholar
  23. 23.
    L. N. El'Nichnykh and V. G. Lenchenko, Histomorphological changes in animal organs during poisoning with tellurium compounds,Klin. Patog. Profil. Zabol. Khim. Etiol. Predpr. Tsvet. Chern. Med. 169;2, 155–160 (1969) (Chemical Abstracts 74, 97299T): [1969].Google Scholar
  24. 24.
    W. W. Carlton and W. A. Kelly, Tellurium toxicosis in Pekin ducks,Toxicol. Appl. Pharmacol. 11, 203–214 (1967).CrossRefGoogle Scholar
  25. 25.
    J. H. H. Keall, N. H. Martin, and R. E. Tunbridge, Three cases of accidental poisoning by sodium tellurite,Br. Jo. Ind. Med. 3, 175 (1946).Google Scholar
  26. 26.
    R. L. Webster, Washington Agricultural Experimental Station Circular No. 64 (1950) (Chemical Abstracts [1950]: 44, 5511).Google Scholar
  27. 27.
    International Labor Office. Occupation and Health, ILO, Geneva,2, 1009 (1934).Google Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Andrew Taylor
    • 1
    • 2
  1. 1.Trace Elements Laboratory, Robens instituteUniversity of SurreyGuildfordEngland
  2. 2.Department of Clinical Biochemistry, Immunology and NutritionRoyal Surrey County HospitalGuildfordEngland

Personalised recommendations