Estuaries and Coasts

, Volume 29, Issue 3, pp 487–498 | Cite as

Responses of resident marsh fishes to stages ofPhragmites australis invasion in three mid Atlantic estuaries

  • Karen L. Hunter
  • Dewayne A. Fox
  • Lori M. Brown
  • Kenneth W. Able


Modification of brackish marshes by nonindigenousPhragmites australis has occurred across a broad geographical area in eastern North America. Among its effects on marsh processes,Phragmites may be increasingly unfavorable to marsh surface fishes as its invasion progresses within an estuary. We assessed the effect of thePhragmites invasion on resident marsh surface fishes by examining the population response ofFundulus heteroclitus (mummichog, 5–48 mm TL) andF. luciae (spotfin killifish, 5–41 mm TL) to four distinct invasion stages in three estuaries of the U.S. mid Atlantic region (New Jersey, Delaware, and Maryland). We documented precipitous declines in mean catch per unit effort ofF. heteroclitus in pit traps from natural marsh (51.6), through initial (33.8), early (12.3), and late invasion stages (2.4) across all sites. A similar pattern was documented forF. luciae, with mean catch per unit effort in pit traps declining from natural marsh (48.9), through initial (39.1), early (9.3), and late invasion stages (2.7). Population structure of both species also changed somewhat across invasion stages such that we collected a narrower size range of individuals of both species from late invasion stages. Patterns suggest that as thePhragmites invasion progresses, there is a decline in habitat function for larval and juvenileF. heteroclitus and an increased risk of extirpation ofF. luciae from brackish marshes along the east coast of the U.S.


Marsh Surface Discrete Sample Natural Marsh Brackish Marsh Marsh Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Able, K. W. andM. P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight, 1st edition. Rutgers University Press, New Brunswick, New Jersey.Google Scholar
  2. Able, K. W. andS. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fishes and decapod crustaceans.Estuaries 23:633–646.CrossRefGoogle Scholar
  3. Able, K. W. andS. M. Hagan. 2003. Impact of common reed,Phragmites australis, on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus).Estuaries 26:40–50.CrossRefGoogle Scholar
  4. Able, K. W., S. M. Hagan, andS. A. Brown. 2003. Mechanisms of marsh habitat alteration due toPhragmites: Responses of young-of-the-year mummichog (Fundulus heteroclitus) to treatment forPhragmites removal.Estuaries 26:484–494.CrossRefGoogle Scholar
  5. Able, K. W., S. M. Hagan, and S. A. Brown. 2006. Habitat use, movement and growth of young-of-the-yearFundulus spp. in southern New Jersey salt marshes: Comparisons based on tag/ recapture.Journal of Experimental Marine Biology and Ecology in press.Google Scholar
  6. Able, K. W., C. W. Talbot, andJ. K. Shisler. 1983. The spotfin killifish (Fundulus luciae) is common in New Jersey salt marshes.Bulletin of the New Jersey Academy of Science 28:7–11.Google Scholar
  7. Angradi, T. R., S. M. Hagan, andK. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92.CrossRefGoogle Scholar
  8. Benoit, L. K. andR. A. Askins. 1999. Impact of the spread ofPhragmites on the distribution of birds in Connecticut tidal marshes.Wetlands 19:194–208.Google Scholar
  9. Burdick, D. M. andR. A. Konisky. 2003. Determinants of expansion forPhragmites australis, common reed, in natural and impacted coastal marshes.Estuaries 26:407–416.Google Scholar
  10. Byrne, D. M. 1978. Life history of the spotfin killifish,Fundulus luciae (Pisces: Cyprinodontidae), in Fox Creek Marsh, Virginia.Estuaries 4:211–227.CrossRefGoogle Scholar
  11. Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.CrossRefGoogle Scholar
  12. Chambers, R. M., D. T. Osgood, D. J. Bart, andF. Montalto. 2003.Phragmites australis invasion and expansion in tidal wetlands: Interactions among salinity, sulfide, and hydrology.Estuaries 26:398–406.CrossRefGoogle Scholar
  13. CBPAWG (Chesapeake Bay Phragmites australis Working Group). 2003. Common reed (Phragmites australis) in the Chesapeake Bay: A draft bay-wide management plan. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, Maryland.Google Scholar
  14. Cronk, Q. B. andJ. L. Fuller. 1995. Plant Invaders, 1st edition. Chapman and Hall, London, U.K.Google Scholar
  15. Currin, C. A., S. C. Wainright, K. W. Able, M. P. Weinstein, andC. M. Fuller. 2003. Determination of food web support and trophic position of the mummichog,Fundulus heteroclitus, in New Jersey smooth cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes.Estuaries 26:495–510.Google Scholar
  16. Deegan, L. A., J. E. Hughes, andR. A. Rountree. 2000. Salt marsh ecosystem support of marine transient species, p. 333–365.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology, 1st edition. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  17. Fell, P. E., R. S. Warren, J. K. Light, R. L. Rawson Jr., andS. M. Fairley. 2003. Comparison of fish and microinvertebrate use ofTypha anustifolia, Phragmites australis, and treatedPhragmites marshes along the lower Connecticut River.Estuaries 26:534–551.Google Scholar
  18. Gordon, D. R. 1998. Effects of invasive, non-indigenous plant species on ecosystem processes: Lessons from Florida.Ecological Applications 8:975–987.CrossRefGoogle Scholar
  19. Hanson, S. R., D. T. Osgood, andD. J. Yozzo. 2002. Nekton use of aPhragmites australis marsh on the Hudson River, New York, USA.Wetlands 22:326–337.CrossRefGoogle Scholar
  20. Hardy, Jr.,J. D. 1978. Development of fishes of the Mid-Atlantic Bight. An atlas of egg, larval and juvenile stages, Volume II. U.S. Fish and Wildlife Service Publication FWS/OBS-78/12: Center for Environmental and Estuarine Studies of the University of Maryland, Cambridge, Maryland.Google Scholar
  21. Kennish, M. J. 2004. Estuarine Research, Monitoring and Resource Protection, 1st edition. CRC Press, Boca Raton, Florida.Google Scholar
  22. Kneib, R. T. 1984. Patterns of utilization of the intertidal salt marsh by larvae and juveniles ofFundulus heteroclitus (Linnaeus) andFundulus luciae (Baird).Journal of Experimental Marine Biology and Ecology 83:41–51.CrossRefGoogle Scholar
  23. Kneib, R. T. 1986. The role ofFundulus heteroclitus in salt marsh trophodynamics.American Zoologist 26:259–269.Google Scholar
  24. Kneib, R. T. 1997. Early life stages of resident nekton in intertidal marshes.Estuaries 20:214–230.CrossRefGoogle Scholar
  25. Kneib, R. T. andS. L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation.Marine Ecology Progress Series 106:227–238.CrossRefGoogle Scholar
  26. Lathrop, R. G., L. Windham, andP. Montesano. 2003 DoesPhragmites alter the structure and function of marsh landscapes? Patterns and processes revisited.Estuaries 26:423–435.Google Scholar
  27. Lejeune, K. D. andT. R. Seasteadt. 2001.Centaurea species: The forb that won the west.Conservation Biology 15:1568–1574.CrossRefGoogle Scholar
  28. Leonard, L. A., P. A. Wren, andR. L. Beavers. 2002. Flow dynamics and sedimentation inSpartina alterniflora andPhragmites australis marshes of the Chesapeake Bay.Wetlands 22:415–424.CrossRefGoogle Scholar
  29. Luken, J. O. andJ. W. Thieret. 1997. Assessment and Management of Plant Invasions, 1st edition. Springer, New York.Google Scholar
  30. Martel, A., D. A. Pathy, J. B. Madil, C. B. Renaud, S. L. Dean, andS. J. Kerr. 2001. Decline and regional extirpation of freshwater mussels (Unionidae) in a small river system invaded byDreissena polymorpha: The Rideau River, 1993–2000.Canadian Journal of Zoology 79:2181–2191.CrossRefGoogle Scholar
  31. Meeking, J. F. andB. C. McCarthy. 1999. Competitive ability ofAlliaria petiola (garlic mustard, Brasicaceae), and invasive, nonindigenous forest herb.International Journal of Plant Sciences 160:743–752.CrossRefGoogle Scholar
  32. Meyer, D. L., J. M. Johnson, andJ. W. Gill. 2001. Comparison of nekton use ofPhragmites australis andSpartina alterniflora marshes in the Chesapeake Bay, USA.Marine Ecology Progress Series 209:71–84.CrossRefGoogle Scholar
  33. Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetlands Ecology and Management 8:89–103.CrossRefGoogle Scholar
  34. Minello, T. J. andR. J. Zimmerman. 1992. Utilization of natural and transplanted Texas salt marsh by fish and decapod crustaceans.Marine Ecology Progress Series 90:273–285.CrossRefGoogle Scholar
  35. Nemerson, D. M. andK. W. Able. 2003. Spatial and temporal patterns in the distribution and feeding habits ofMorone saxatilis in marsh creeks of Delaware Bay, USA.Fisheries Management and Ecology 10:337–348.CrossRefGoogle Scholar
  36. Osgood, D. T., D. Yozzo, R. Chambers, D. Jacobson, T. Hoffman, andJ. Wnek. 2003. Tidal hydrology and habitat utilization by resident nekton inPhragmites and non-Phragmites marshes.Estuaries 26:522–533.Google Scholar
  37. Osgood, D. T., D. Yozzo, R. Chambers, S. Pianka, J. Lewis, and C. Lepage. 2006. Patterns of habitat utilization by resident nekton inPhragmites andTypha marshes of the Hudson River Estuary, New York.American Fisheries Society Journal in press.Google Scholar
  38. Pimentel, D. 2000. Environmental and economic costs associated with non-indigenous species in the United States.Bioscience 50: 53–65.CrossRefGoogle Scholar
  39. Posey, M. H. 1988. Community changes associated with the spread of an introduced seagrass,Zostera japonica.Ecology 69:974–983.CrossRefGoogle Scholar
  40. Raichel, D. L., K. W. Able, andJ. M. Hartman. 2003. The influence ofPhragmites (common reed) on the distribution, abundance, and potential prey of a resident marsh fish in the Hackensack Meadowlands, New Jersey,Estuaries 26:511–521.Google Scholar
  41. Raposa, K. B. andC. T. Roman. 2001. Seasonal habitat-use patterns of nekton of a tidal-restricted and unrestricted New England salt marsh.Wetlands 21:451–461.CrossRefGoogle Scholar
  42. Rooth, J. E., J. C. Stevenson, andJ. C. Cornwell. 2003. Increased sediment accretion rates following invasion byPhragmites australis: The role of litter.Estuaries 26:475–483.Google Scholar
  43. Sakowicz, G. P. 2003. Comparative morphology and behavior of larval salt marsh fishes:Fundulus heteroclitus andCyprinodon variegatus. M.S. Thesis, Rutgers University, New Brunswick, New Jersey.Google Scholar
  44. Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis, into North America.Proceedings of National Academy of Sciences 99:2445–2449.CrossRefGoogle Scholar
  45. Schmitz, D. C., D. Simberloff, R. H. Hofstetter, W. Haller, andD. Sutton. 1997. The ecological impact of nonindigenous plants, p. 36–61.In D. Simberloff, D. C. Schmitz, and T. C. Brown (eds.), Strangers in Paradise: Impact and Management of Nonindigenous Species in Florida, 1st edition. Island Press, Washington, D.C.Google Scholar
  46. Seliskar, D. M., J. L. Gallagher, D. M. Burdick, andL. A. Mutz. 2002. The regulation of ecosystem functions by ecotypic variation in the dominant plant: ASpartina alterniflora salt-marsh case study.Journal of Ecology 90:1–11.CrossRefGoogle Scholar
  47. Silliman, B. R. andM. D. Bertness. 2004. Shoreline development drives invasion ofPhragmites australis and the loss of plant diversity on New England salt marshes.Conservation Biology 18: 1424–1434.CrossRefGoogle Scholar
  48. Talley, T. S. andL. A. Levin. 2001. Modification of sediments and macrofauna by an invasive marsh plant.Biological Invasions 3: 51–68.CrossRefGoogle Scholar
  49. Vitousek, P. M. 1990. Biological invasions and ecosystem processes: Towards an integration of population biology and ecosystem studies.Oikos 57:7–13.CrossRefGoogle Scholar
  50. Warren, R. S., P. E. Fell, J. L. Grimbsby, E. L. Buck, G. C. Rilling, andA. Fertik. 2001. Rates, patterns, and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates and fish within tidelands of the lower Connecticut River.Estuaries 24:90–107.CrossRefGoogle Scholar
  51. Weinstein, M. P., J. M. Teal, J. H. Balletto, andK. A. Strait. 2001. Restoration principles emerging from one of the world's largest tidal restoration projects.Wetlands Ecology and Management 9:387–407.CrossRefGoogle Scholar
  52. Weisberg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichogFundulus heteroclitus: An experimental approach.Marine Biology 66:307–310.CrossRefGoogle Scholar
  53. Wilcox, K. L., S. A. Petrie, L. A. Maynard, andS. W. Meyer. 2003. Historical distribution and abundance ofPhragmites australis at Long Point, Lake Erie, Ontario.Journal of Great Lakes Research 29:664–680.Google Scholar
  54. Windham, L. andR. G. Lathrop 1999. Effects ofPhragmites australis (common reed) invasion on above-ground biomass and soil properties in a brackish tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–935.CrossRefGoogle Scholar
  55. Yozzo, D. J. andF. Ottman. 2003. New distribution records for the spotfin killifish,Fundulus luciae (Baird), in the lower Hudson River estuary and adjacent waters.Northeastern Naturalist 10:399–408.Google Scholar
  56. Yozzo, D. J. andD. E. Smith. 1998. Composition and abundance of resident marsh-surface nekton: Comparison between tidal freshwater and salt marshes in Virginia, USA.Hydrobiologia 362: 9–19.CrossRefGoogle Scholar
  57. Zar, J. H. 1999. Biostatistical Analysis, 4th edition. Prentice-Hall, Inc., Upper Saddle River, New Jersey.Google Scholar
  58. Zedler, J. B. 2000. Progress in wetland restoration ecology.Trends in Ecology and Evolution 15:402–407.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Able, K. W., G. P. Sakowicz, and J. C. Lamonaca. unpublished data. Rutgers University Marine Field Station, 132 Great Bay Blvd., Tuckerton, New Jersey 08087-2004.Google Scholar
  2. Hagan, S. M., S. A. Brown, and K. W. Able. unpublished data. Rutgers University Marine Field Station, 132 Great Bay Blvd., Tuckerton, New Jersey 08087-2004.Google Scholar

Copyright information

© Estuarine Research Federation 2006

Authors and Affiliations

  • Karen L. Hunter
    • 1
  • Dewayne A. Fox
    • 2
  • Lori M. Brown
    • 2
  • Kenneth W. Able
    • 1
  1. 1.Marine Field Station, Institute of Marine and Coastal SciencesRutgers UniversityTuckerton
  2. 2.Department of Agriculture and Natural ResourcesDelaware State UniversityDover

Personalised recommendations