Advertisement

Estuaries and Coasts

, Volume 29, Issue 3, pp 388–400 | Cite as

Dissolved organic matter (DOM) export to a temperate estuary: seasonal variations and implications of land use

  • Colin A. Stedmon
  • Stiig Markager
  • Morten Søndergaard
  • Torben Vang
  • Anker Laubel
  • Niels Henrik Borch
  • Anders Windelin
Article

Abstract

Inputs of dissolved carbon, nitrogen, and phosphorus were assessed for an estuary and its catchment (Horsens, Denmark). Seasonal patterns in the concentrations of DOM in the freshwater supply to the estuary differed depending on the soil and drainage characteristics of the area. In streams draining more natural areas the, patterns observed were largely driven by seasonal temperature fluctuations. The material exported from agricultural areas was more variable and largely controlled by precipitation events. Positive exponential relationships were found between the nitrogen and phosphorus loading, and the percentage of catchment area used for agriculture. Colored DOM (CDOM) loading measurements were found to be a good predictor of dissolved organic carbon (DOC) loading across the different subcatchments, offering a rapid and inexpensive alternative of operationally monitoring DOC export. For all the dissolved nutrient inputs to the estuary, dissolved inorganic nitrogen (DIN) and dissolved organic phosphorus dominated the loadings. Although 81% of the nitrogen annually supplied to the estuary was DIN, 83% of the nitrogen exported from the estuary was dissolved organic nitrogen (DON). Results show that increasing the area of the catchment covered by forest and natural pastures would have a positive effect on the trophic status of the estuary, leading to a considerable decrease in the phosphorus loading and a shift in the nitrogen loading from DIN to DON. Such a change in land use would also increase the export of DOC and CDOM to the estuary having the potential to increase oxygen consumption and reduce the photic depth.

Keywords

Dissolve Organic Matter Dissolve Inorganic Nitrogen Dissolve Organic Carbon Concentration Dissolve Organic Nitrogen Dissolve Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Attkenhead-Peterson, J. A. andW. H. McDowell. 2000. Soil C: N ratio as a predictor of annual riverine DOC flux at local and global scales.Global Biogeochemical Cydes 14:127–138.CrossRefGoogle Scholar
  2. Bronk, D. 2002. Dynamics of DON, p. 153–249.In D. A. Hansell and C. A. Carlson (eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, California.CrossRefGoogle Scholar
  3. Bushaw, K. L., R. G. Zepp, M. A. Tarr, D. Schultz-Jander, R. A. Bourbonniere, R. E. Hodson, W. L. Miller, D. A. Bronk, andM. A. Moran. 1996. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter.Nature 381:404–407.CrossRefGoogle Scholar
  4. Conley, D. J., H. Kaas, F. Møhlenberg, B. Rasmussen, andJ. Windolf. 2000. Characteristics of Danish estuaries.Estuaries 23: 820–837.CrossRefGoogle Scholar
  5. Grant, R., A. Laubel, B. Kronvang, H. E. Andersen, L. M. Svendsen, andA. Fuglsang. 1996. Loss of dissolved and particulate phosphorus from arable catchments, by subsurface drainage.Water Research 30:2633–2642.CrossRefGoogle Scholar
  6. Guggenberger, G., K. Kaiser, andW. Zech. 1998. Mobilization and immobilization of dissolved organic matter in forest soils.Journal of Plant Nutrition and Soil Science 101:401–408.Google Scholar
  7. Hansell, D. A. andC. A. Carlson. 2002. Biogeochemistry of Marine Dissolved Organic Matter, 1st edition. Academic Press, San Diego, California.Google Scholar
  8. Hansen, H. P. andF. Koroleff. 1999. Determination of nutrients, p. 159–228.In K. Grasshoff, K. Kremling, and M. Ehrhardt (eds.), Methods of Seawater Analysis, 3rd edition. Wiley-VCH, Weinheim, Germany.Google Scholar
  9. Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, J. A. Downing, R. Elmgren, N. Caraco, andK. Lajtha 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry 35:75–139.CrossRefGoogle Scholar
  10. Kalbitz, K., S. Solinger, J. H. Park, B. Michalzik, andE. Matzner. 2000. Controls on the dynamics of dissolved organic matter in soils A review.Soil Science 165:277–304.CrossRefGoogle Scholar
  11. Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd edition. Cambridge University Press. Cambridge, U.K.Google Scholar
  12. Kronvang, B., C. C. Hoffmann, L. M. Svendsen, J. Windolf, J. P. Jensen, andJ. Dørge. 1999b. Retention of nutrients in river basins.Aquatic Ecology 33:29–40.CrossRefGoogle Scholar
  13. Kronvang, B., A. Laubel, andR. Grant. 1997. Suspended sediment and particulate phosphorus transport and delivery pathways in an arable catchment, Gelbaek Stream, Denmark.Hydrological Processes 11:627–642.CrossRefGoogle Scholar
  14. Kronvang, B., J. Windolf, S. E. Larsen, S. Platou, andH. Jensen. 1999a. Nutrient supply to Horsens estuary (in Danish).Vand og Jord 6:250–255.Google Scholar
  15. Laubel, A., B. Kronvang, A. B. Hal, andC. Jensen. 2003. Hydromorphological and biological factors influencing sediment and phosphorus loss, via bank erosion in small lowland rural streams in Denmark.Hydrological Processes 17:3443–3463.CrossRefGoogle Scholar
  16. McDowell, W. H. andT. Wood. 1984. Podzolization-Soilo processes control dissolved organic carbon concentrations in stream water.Soil Science 137:23–32.CrossRefGoogle Scholar
  17. Meybeck, M. 1982. Carbon nitrogen and phosphorus transport by world rivers.American Journal of Science 282:401–450.Google Scholar
  18. Moran, M. A. andR. G. Zepp. 1997. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter.Limnology and Oceanography 42:1307–1316.Google Scholar
  19. Moran, M. A., W. M. Sheldon, andR. G. Zepp. 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter.Limnology and Oceanography 45:1254–1264.Google Scholar
  20. Mulholland, P. J. 2003. Large-scale patterns in dissolved organic carbon concentration, flux and sources, p. 139–160.In S. E. G. Findlay and R. L. Sinsabaugh (eds), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Aquatic Ecology Series, Academic Press, San Diego, California.Google Scholar
  21. Muller, F. L. L., A. Larsen, C. A. Stedmon, andM. Søndergaard. 2005. Interactions between algal/bacterial populations and trace metals in fjord surface waters during a nutrient-stimulated summer bloom.Limnology and Oceanography 50:1855–1871.Google Scholar
  22. Obernoster, I., P. Ruardij, andG. J. Herndl. 2001. Spatial and diurnal dynamics of dissolved organic matter (DOM) fluorescence and H2O2 and the photochemical oxygen demand of surface water DOM across the subtropical Atlantic Ocean.Limnology and Oceanography 46:632–643.Google Scholar
  23. Seitzinger, S. P., R. W. Sanders, andR. Styles. 2002. Bioavailability of DON from natural and anthropogenic sources to estuarine plankton.Limnology and Oceanography 47:353–366.Google Scholar
  24. Sharpley, A. N., S. C. Chapra, R. Wodepohl, J. T. Sims, andT. C. Daniel. 1994. Managing agricultural, phosphorus for protection of surface waters: Issues and options.Journal of Environmental Quality 23:437–451.Google Scholar
  25. Sharpley, A. N., M. J. Hedley, E. Sibbesen, A. Hillbricht-Ilkowska, W. A. House, andL. Ryszkowski. 1995. Phosphorus transfers from terrestrial to aquatic ecosystems, p. 171–199.In H. Tiessen, (ed.), Phosphorus in the Global Environment: Transfers, Cycles and Management. Wiley and Sons, Chichester, U.K.Google Scholar
  26. Sinsabaugh, R. L. andS. Findlay. 2003. Dissolved organic matter: Out of the black box and into the mainstream, p. 479–498.In S. E. G. Findlay and R. L. Sinsabaugh (eds.), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Aquatic Ecology Series, Academic Press, San Diego, California.Google Scholar
  27. Stedmon, C. A., S. Markager, andH. Kaas. 2000. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters.Estuarine Coastal and Shelf Science 51:267–278.CrossRefGoogle Scholar
  28. Stepanauskas, R. 2000. Utilisation of terrestrially derived dissolved organic nitrogen by aquatic bacteria. Ph.D. Dissertation, University of Lund, Lund, Sweden.Google Scholar
  29. Stepanauskas, R., H. Edling, andL. J. Tranvik. 1999a. Differential dissolved organic nitrogen availability and bacterial aminopeptidase activity in limnic, and marine waters.Microbial Ecology 38: 264–272.CrossRefGoogle Scholar
  30. Stepanauskas, R., L. J. Tranvik, andL. Leonardson. 1999b. Bioavailability of wetland derived DON to freshwater and marine bacterioplankton.Limnology and Oceanography 44:1477–1485.Google Scholar
  31. Søndergaard, M., C. A. Stedmon, andN. H. Borch., 2003. Fate of terrigenous dissolved organic, matter (DOM) in estuaries: Aggregation and bioavailability.Ophelia 57:161–176.Google Scholar
  32. Søndergaard, M., P. J. le B. Williams, G. Cauwet, B. Riemann C. Robinson, S. Terzic, E. M. S. Woodward, andJ. Worm. 2000. Net accumulation and flux of dissolved organic carbon and dissolved organic nitrogen in marine plankton communities.Limnology and Oceanography 45:1097–1111.CrossRefGoogle Scholar
  33. Tipping, E., C. Woof, E. Rigg, A. F. Harrison, P. Ineson, K. Taylor, D. Benham, J. Poskitt, A. P. Rowland, R. Bol, andD. D. Harkness. 1999. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment.Environment International 25:83–95.CrossRefGoogle Scholar
  34. Urban, N. R., S. E. Beily, andS. J. Eisenreich. 1989. Export of dissolved organic carbon and acidity from peatlands.Water Research 25:1619–1628.CrossRefGoogle Scholar
  35. Valderrama, J. C. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters.Marine Chemistry 10:109–122.CrossRefGoogle Scholar
  36. Wells, M. L. 2001. Marine colloids and trace metals, p. 367–404.In D. A. Hansell and C. A. Carlson (eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, California.Google Scholar
  37. Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems, 3rd edition. Academic Press, San Diego, California.Google Scholar
  38. Wikner, J., R. Cuadros, andM. Jansson. 1999. Differences in consumption of allochthonous DOC under limnic and estuarine conditions in a watershed.Aquatic Microbial Ecology 17:289–299.CrossRefGoogle Scholar
  39. Ertebjerg, G., J. H. Anderson, andO. S. Hansen. 2003. Nutrients and eutrophication in Danish marine waters. A challenge for science and management. National Environmental Research Institute, Denmark (Internet version available at www.dmu.dk)Google Scholar

Sources of Unpublished Materials

  1. Andersen, B. personal communication. Vejle County, Department of Marine Environment, Damhaven 12, DK-7100 Vejle, Denmark.Google Scholar
  2. Pedersen, E. personal communication. Vejle County, Department of Marine Environment, Damhaven 12, DK-7100 Vejle, Denmark.Google Scholar

Copyright information

© Estuarine Research Federation 2006

Authors and Affiliations

  • Colin A. Stedmon
    • 1
  • Stiig Markager
    • 1
  • Morten Søndergaard
    • 2
  • Torben Vang
    • 3
  • Anker Laubel
    • 3
  • Niels Henrik Borch
    • 2
  • Anders Windelin
    • 3
  1. 1.Department of Marine EcologyNational Environmental Research InstituteRoskildeDenmark
  2. 2.Freshwater Biological LaboratoryUniversity of CopenhagenHillerødDenmark
  3. 3.Department of Marine EnvironmentVejle CountyVejleDenmak

Personalised recommendations