Estuaries and Coasts

, Volume 29, Issue 3, pp 375–387 | Cite as

Regional scale climate forcing of mesozooplankton dynamics in Chesapeake Bay

  • David G. KimmelEmail author
  • W. David Miller
  • Michael R. Roman


A 16-yr (1985–2000) time series of calanoid copepod (Acartia tonsa andEurytemora affinis) abundance in the upper Chesapeake Bay was examined for links to winter weather variability. A synthesis of sea level pressure data revealed ten dominant, winter weather patterns. Weather patterns differed in frequency of occurrence as well as associated precipitation and temperature. The two dominant copepod species responded differently to winter weather variability.A. tonsa abundance showed little response to winter weather and did not vary in abundance during wet or dry springs.E affinis responded strongly to winter weather patterns that produced springs with high freshwater discharge and low salinities. During wet springs,E. affinis abundance increased overall and its area of dominance extended further down estuary. The different response of the two species is likely related to several factors including residence time, development time, salinity tolerance, food limitation, and life history strategy. Important fish species that rely on zo oplankton as food resources were also related to winter weather variability and spring zooplankton abundance.Morone saxatilis (striped bass) andAnchoa mitchilli (bay anchovy) juvenile indices were positively and negatively correlated toE. affinis abundance, respectively. *** DIRECT SUPPORT *** A02BY003 00004


North Atlantic Oscillation Striped Bass Weather Pattern Marine Ecology Progress Series White Perch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Attrill, M. J. andM. Power. 2002. Climatic influence on a marine fish assemblage.Nature 417:275–278.CrossRefGoogle Scholar
  2. Austin, H. M. 2002. Decadal oscillation and regime shifts, a characterization of the Chesapeake Bay marine climate.American Fisheries Society Symposium 32:155–170.Google Scholar
  3. Bradley, B. P. 1991. Distribution of copepods in coastal zone waters: Seasonal succession in Chesapeake Bay.Bulletin of the Plankton Society of Japan, 129–131.Google Scholar
  4. Castel, J. andJ. Veiga. 1990. Distribution and retention of the copepodEurytemora affinis hirundoides in a turbid etuary.Marine Biology 107:119–128.CrossRefGoogle Scholar
  5. Cervetto, G., R. Gaudy, andM. Pagano. 1999. The influence of salinity on the distribution ofAcartia tonsa (Copepoda: Calanoida).Journal of Experimental Marine Biology and Ecology 239:33–45.CrossRefGoogle Scholar
  6. Chesapeake Bay Program (CBP). 2000. Guide to Living Resources Data. Chesapeake Bay Program, Annapolis Maryland.Google Scholar
  7. Crane, R. G. andB. C. Hewitson. 1998. Doubled CO2 precipitation changes for the Susquehanna Basin: Down-scaling from the GENESIS general circulation model.International Journal of Climatology 18:65–76.CrossRefGoogle Scholar
  8. Cronin, T., D. Willard, A. Karlsen, S. Ishman, S. Verardo, J. McGeehin, R. Kerhn, C. Holmes, S. Colman, andA. Zimmerman. 2000. Climatic variability in the eastern United States over the past millennium from Chesapeake Bay sediments.Geology 28:3–6.CrossRefGoogle Scholar
  9. Crump, B. C., J. A. Baross, andC. A. Simenstad. 1998. Dominance of particle-attached bacteria in the Columbia River estuary, USA.Aquatic Microbial Ecology 14:7–18.CrossRefGoogle Scholar
  10. Cushing, D. H. andR. R. Dickson. 1976. The biological response in the sea to climatic changes.Advances in Marine Biology 14:1–122.CrossRefGoogle Scholar
  11. Davis, R. E., R. Dolan, andG. Demme. 1993. Synoptic climatology of Atlantic coast north-easters.International Journal of Climatology 13:171–189.CrossRefGoogle Scholar
  12. Davis, R. E., B. P. Hayden, D. A. Gay, W. L. Phillips, andG. V. Jones. 1997. The North Atlantic subtropical anticyclone.Journal of Climate 10:728–744.CrossRefGoogle Scholar
  13. Devreker, D., Souissi, andL. Seuront. 2004. Development and mortality of the first naupliar stages ofEurytemora affinis (Copepoda, Calanoida) under different conditions of salinity and temperature.Journal of Experimental Marine Biology and Ecology 303:31–46.CrossRefGoogle Scholar
  14. Dippner, J. W., J. Hanninen, H. Kuosa, andI. Vuorinen. 2001. The influence of climate variability on zooplankton abundance in the northern Baltic Archipelago Sea (SW Finland).ICES Journal of Marine Science 58:569–578.CrossRefGoogle Scholar
  15. Dyer, K. R. 1997. Estuaries: A Physical Introduction, 2nd edition. John Wiley and Sons, Chichester, U.K.Google Scholar
  16. Fromentin, J.-M. andB. Planque. 1996. Calanus and environment in the eastern North Atlantic. II. Influence of the North Atlantic Oscillation onC. finmarchicus andC. helgolandicus.Marine Ecology Progress Series 134:111–118.CrossRefGoogle Scholar
  17. Gibson, J. R. andR. G. Najjar. 2000. The response of Chesapeake Bay salinity to climate-induced changes in stream flow.Limnology and Oceanography 45:1764–1772.CrossRefGoogle Scholar
  18. Harding, Jr.L. W. 1994. Long-term trends in the distribution of phytoplankton in Chesapeake Bay: Roles of light, nutrients and stream flow.Marine Ecology Progress Series 104:267–291.CrossRefGoogle Scholar
  19. Heinle, D. R. 1966. Production of a calanoid copepod,Acartia tonsa, in the Patuxent Estuary.Chesapeake Science 7:59–74.CrossRefGoogle Scholar
  20. Heinle, D. R. 1969. Temperature and zooplankton.Chesapeake Science 10:186–209.CrossRefGoogle Scholar
  21. Heinle, D. andD. Flemer. 1975. Carbon requirements of a population of the estuarine copepodEurytemora affinis.Marine Biology 31:235–247.CrossRefGoogle Scholar
  22. Heinle, D. R., R. P. Harris, J. F. Ustach, andD. A. Flemer. 1977. Detritus as food for estuarine copepods.Marine Biology 40:341–353.CrossRefGoogle Scholar
  23. Hirche, H.-J. 1974. Die copepodenEurytemora affinis Poppe undAcartia tonsa Dana und ihre Besiedlung durchMyoschiston centropagidarum Precht (Peritricha) in der Schlei.Kieler Meeresforschungen 30:43–64.Google Scholar
  24. Hollowed, A. B., S. R. Hare, andW. S. Wooster. 2001. Pacific Basin climate variability and patterns of Northeast Pacific marine fish production.Progress in Oceanography 49:257–282.CrossRefGoogle Scholar
  25. Hurrell, J. W. 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation.Science 269:676–679.CrossRefGoogle Scholar
  26. Jung, S. andE. D. Houde. 2003. Spatial and temporal variabilities of pelagic fish community structure and distribution in Chesapeake Bay, USA.Estuarine Coastal and Shelf Science 58: 335–351.CrossRefGoogle Scholar
  27. Katona, S. K. 1970. Growth characteristics of the copepodsEurytemora affinis andE. herdmani in laboratory cultures.Helgoländer wissenschaftliche Meeresuntersuchungen 20:373–384.CrossRefGoogle Scholar
  28. Kimmel, D. G. andM. R. Roman. 2004. Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: Influence of freshwater input.Marine Ecology Progress Series 267:71–83.CrossRefGoogle Scholar
  29. Kimmel, D. G., M. R. Roman, andX. Zhang. 2006. Spatial and temporal variability in factors controlling mesozooplankton dynamics in Chesapeake Bay: Evidence from biomass size spectra.Limnology and Oceanography 51:131–141.Google Scholar
  30. Kraus, R. T. andD. H. Secor. 2005. Application of the nursery role hypothesis to an estuarine fish.Marine Ecology Progress Series 291:301–305.CrossRefGoogle Scholar
  31. Landry, M. R. 1983. The development of marine calanoid copepods with comment on the isochronal rule.Limnology and Oceanography 28:614–624.Google Scholar
  32. Lee, C. E. 1999. Rapid and repeated invasions of freshwater by the copepodEurytemora affinis.Evolution 53:1423–1434.CrossRefGoogle Scholar
  33. Miller, W. D., D. G. Kimmel, and L. W. Harding Jr. 2006. Predicing spring discharge of the Susquehanna River from a winter synoptic climatology for the eastern United States.Water Resources Research 42, W05414, doi:10.1029/ 2005WR004270.Google Scholar
  34. Najjar, R. G. 1999. The water balance of the Susquehanna River Basin and its response to climate change.Journal of Hydrology 219:7–19.CrossRefGoogle Scholar
  35. Najjar, R. G., H. A. Walker, P. J. Anderson, E. J. Barron, R. J. Bord, J. R. Gibson, V. S. Kennedy, C. G. Knight, J. P. Megonigal, R. E. O'Connor, C. D. Polsky, N. P. Psuty, B. A. Richards, L. G. Sorenson, E. M. Steele, andR. S. Swanson. 2000. The potential impacts of climate change on the mid-Atlantic coastal region.Climate Research 14:219–233.CrossRefGoogle Scholar
  36. North, E. W. andE. D. Houde. 2001. Retention of white perch and striped bass larvae: Biological-physical interactions in Chesapeake Bay estuarine turbidity maximum.Estuaries 24: 756–769.CrossRefGoogle Scholar
  37. North, E. W. andE. D. Houde. 2003. Linking ETM physics, zooplankton prey, and fish early-life histories to striped bassMorone saxatilis and white perch.M. americana recruitment.Marine Ecology Progress Series 260:219–236.CrossRefGoogle Scholar
  38. Ottersen, G., B. Planque, A. Belgrano, E. Post, P. C. Reid, andN. C. Stenseth. 2001. Ecological effects of the North Atlantic Oscillation.Oecologia 128:1–14.CrossRefGoogle Scholar
  39. Paffenhöfer, G.-A. andD. E. Stearns. 1988. Why isAcartia tonsa (Copepoda: Calanoida) restricted to nearshore environments?Marine Ecology Progress Series 42:33–38.CrossRefGoogle Scholar
  40. Parmesan, C. andG. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems.Nature 421: 37–42.CrossRefGoogle Scholar
  41. Parsons, L. S. andW. H. Lear. 2001. Climate variability and marine ecosystem impacts: A North Atlantic perspective.Progress in Oceanography 49:167–188.CrossRefGoogle Scholar
  42. Pearcy, W. G. andA. Schoener. 1987. Changes in the marine biota coincident with the 1982–1983 El Niño in the northeastern subarctic Pacific Ocean.Journal of Geophysical Research 29: 14417–14428.CrossRefGoogle Scholar
  43. Planque, B. andP. C. Reid. 1998. PredictingCalanus finmarchicus abundance from a climatic signal.Journal of the Marine Biological Association U.K. 78:1015–1018.Google Scholar
  44. Planque, B. andA. H. Taylor. 1998. Long-term changes in zooplankton and the climate of the North Atlantic.ICES Journal of Marine Science 55:644–654.CrossRefGoogle Scholar
  45. Poli, J. M. andJ. Castel. 1983. Cycle biologique en laboratoire d’un copépode planctonique de l’estuaire de la Gironde:Eurytemora hirundoides (Nordquist 1988).Vie et Milieu 33:79–86.Google Scholar
  46. Polsky, C., J. Allard, N. Currit, R. Crane, andB. Yarnal. 2000. The Mid-Atlantic region and its climate: Past, present, and future.Climate Research 14:161–173.CrossRefGoogle Scholar
  47. Read, M. R. 2002. The influence of the North Atlantic Oscillation on streamflow in the Chesapeake Bay watershed. M.S. Thesis, The Pennsylvania State University, State College, Pennsylvania.Google Scholar
  48. Roman, M. R., D. V. Holliday, andL. P. Sanford. 2001. Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum.Marine Ecology Progress Series 213:215–227.CrossRefGoogle Scholar
  49. Roman, M. R., X. Zhang, C. McGilliard, andW. C. Boicourt. 2005. Seasonal and interannual variability in the spatial patterns of zooplankton biomass in Chesapeake Bay.Limnology and Oceanography 50:480–492.Google Scholar
  50. Royer, T. C., C. E. Grosch, andL. A. Mysak. 2001. Interdecadal variability of Northeast Pacific coastal freshwater and its implications on biological productivity.Progress in Oceanography 49:95–111.CrossRefGoogle Scholar
  51. Schubel, J. R. andD. W. Pritchard. 1986. Responses of upper Chesapeake Bay to variations in discharge of the Susquehanna River.Estuaries 9:236–249.CrossRefGoogle Scholar
  52. Secor, D. H. andE. D. Houde. 1995. Temperature effects on the timing of striped bass egg production, larval viability, and recruitment potential in the Patuxent River (Chesapeake Bay).Estuaries 18:527–544.CrossRefGoogle Scholar
  53. Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K. S. Chan, N. G. Yoccoz, andB. Adlandsvik. 2003. Studying the climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Niño Southern Oscillation and beyond.Proceedings of the Royal Society London B 270:2087–2096.CrossRefGoogle Scholar
  54. Sugimoto, T., S. Kimura, andK. Tadokoro. 2001. Impact of El Niño events and climate regime shift on living resources in the western North Pacific.Progress in Oceanography 49:113–127.CrossRefGoogle Scholar
  55. Uphoff, J. H. 1989. Environmental effects on survival of eggs, larvae and juveniles of striped bass in the Choptank River, Maryland.Transaction of the American Fisheries Society 118:251–263.CrossRefGoogle Scholar
  56. Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, andR. Bairlein. 2002. Ecological responses to recent climate change.Nature 416:389–395.CrossRefGoogle Scholar
  57. White, J. R. andM. R. Roman. 1992. Egg production by the calanoid copepodAcartia tonsa in the mesohaline Chesapeake Bay: The importance of food resources and temperature.Marine Ecology Progress Series 86:239–249.CrossRefGoogle Scholar
  58. Wood, R. J. 2000. Synoptic scale climatic forcing of multispecies fish recruitment patterns in Chesapeake Bay. School of Marine Science, The College of William and Mary, Williamsburg, Virginia.Google Scholar
  59. Yarnal, B. 1993. Synoptic Climatology in Environmental Analysis: A Primer. Bellhaven Press, London, U.K.Google Scholar
  60. Yarnal, B. andD. J. Leathers. 1988. Relationships between interdecadal and interannual climatic variations and their effect on Pennsylvania climate.Annals of the Association of American Geographers 78:624–641.CrossRefGoogle Scholar
  61. Zilloux, E. J. andD. R. Wilson. 1966. Culture of a planktonic calanoid copepod through multiple generations.Science 151: 996–998.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2006

Authors and Affiliations

  • David G. Kimmel
    • 1
    Email author
  • W. David Miller
    • 1
  • Michael R. Roman
    • 1
  1. 1.Horn Point LaboratoryUniversity of Maryland Center for Environmental ScienceCambridge

Personalised recommendations