Journal of Pharmaceutical Innovation

, Volume 1, Issue 1, pp 12–17 | Cite as

Understanding critical material properties for solid dosage form design

  • Anthony J. Hlinak
  • Kamal Kuriyan
  • Kenneth R. Morris
  • Gintaras V. Reklaitis
  • Prabir K. Basu


What is the role of standardized methods for determining the impact of material properties in pharmaceutical formulation and process development? In this Perspective article, we identify material properties that are potentially important in solid dosage form design, and we review approaches linking these properties to product specifications in dry granulation process development. We also assess the potential benefits that could be obtained by standardizing the methods for determining the impact of material properties of commonly used excipients and propose a program of research to achieve the desired goal of an efficient, science-based approach for incorporating material properties in solid dosage form design.


Magnesium Stearate Roll Speed Punch Force Pharmaceutical Innovation Roller Compaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolhuis, G.K. and Holzer, A.W. (1996) Lubricant sensitivity. InPharmaceutical Powder Compaction Technology (Alderborn, G. and Nistrom, C., eds), pp 517–560, Marcel Dekker.Google Scholar
  2. 2.
    Wurster, al. (1999) Prediction of the Hiestand bonding indices of binary powder mixtures from single-component bonding indices.Pharm. Dev. Technol. 4, 65–70.PubMedGoogle Scholar
  3. 3.
    Fell, J.T. (1996) Compaction properties of binary mixtures. InPharmaceutical Powder Compaction Technology (Alderborn, G. and Nistrom, C., eds), pp 501–515, Marcel Dekker.Google Scholar
  4. 4.
    Prescott, J.K. and Barnum, R.A. (2000) On powder flowability.Pharm Technol 24, 60–84.Google Scholar
  5. 5.
    Sheskey, P.J. and Dasbach, T.P. (1995) Evaluation of various polymers as dry binders in the preparation of an immediate-release tablet formulation by roller compaction,Pharm Technol, October, 98–112.Google Scholar
  6. 6.
    Mollan, M.J. and Celik, M. (1996) The effects of lubrication on the compaction and post-compaction properties of directly compressible maltodextrins.Int. J. Pharm. 144, 1–9.CrossRefGoogle Scholar
  7. 7.
    Inghelbrecht, S. and Remon, J.P. (1998) Roller compaction and tableting of microcrystalline cellulose/drug mixtures.Int. J. Pharm. 161, 215–224.CrossRefGoogle Scholar
  8. 8.
    Mitchell, al. (2003) A compaction process to enhance dissolution of poorly water-soluble drugs using hydroxypropyl methylcellulose.Int. J. Pharm. 250, 3–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Soares, al. (2005) Dry granulation and compression of spraydried plant extracts.AAPS PharmSciTech 6, E359-E366.PubMedCrossRefGoogle Scholar
  10. 10.
    Falzone, al. (1992) Effects of changes in roller compactor parameters on granulations produced by compaction.Drug Dev. Ind. Pharm. 18, 469–489.CrossRefGoogle Scholar
  11. 11.
    Hervieu, al. (1994) Granulation of pharmaceutical powders by compaction — An experimental study.Drug Dev. Ind. Pharm. 20, 65–74.CrossRefGoogle Scholar
  12. 12.
    Inghelbrecht, S. and Remon, J.P. (1998) The roller compaction of different types of lactose.Int. J. Pharm. 166, 135–144.CrossRefGoogle Scholar
  13. 13.
    Inghelbrecht, al. (1997) Instrumentation of a roll compactor and the evaluation of the parameter settings by neural networks.Int. J. Pharm. 148, 103–115.CrossRefGoogle Scholar
  14. 14.
    Sheskey, al. (2000), Roll compaction granulation of a controlled-release matrix tablet formulation containing HPMC — Effect of process scale-up on robustness of tablets, tablet stability, and predictedin vivo performance,Pharm Technol, November, 30–52.Google Scholar
  15. 15.
    Rambali, al. (2001) Influence of the roll compactor parameter settings and the compression pressure on the buccal bio-adhesive tablet properties.Int. J. Pharm. 220, 129–140.PubMedCrossRefGoogle Scholar
  16. 16.
    Simon, O. and Guigon, P. (2003) Correlation between powder-packing properties and roll press compact heterogeneity.Powder Technol 130, 257–164.CrossRefGoogle Scholar
  17. 17.
    Johanson, J.R. (1965) A rolling theory for granular solids.J. Appl. Mech. 32, 842–848.Google Scholar
  18. 18.
    Jenike, A.W. and Shield, R.T. (1959) On the plastic flow of coulomb solids beyond original failure.J. Appl. Mech. 26, 599–602.Google Scholar
  19. 19.
    Bindhumadhavan, al. (2005) Roll compaction of a pharmaceutical excipient: Experimental validation of rolling theory for granular solids.Chem. Eng. Sci. 60, 3891–3897.CrossRefGoogle Scholar
  20. 20.
    Dec, al. (2003) Comparison of various modeling methods for analysis of powder compaction in rolling press.Powder Technol 130, 265–271.CrossRefGoogle Scholar
  21. 21.
    Sommer, K. and Hauser, G. (2003) Flow and compression properties of feed solids for roll-type presses and extrusion presses.Powder Technol 130, 272–276.CrossRefGoogle Scholar
  22. 22.
    Cunningham, al. (2004) Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction.J. Pharm. Sci. 93, 2022–2039.PubMedCrossRefGoogle Scholar
  23. 23.
    Lewis, al. (2005) A combined finite-discrete element method for simulating pharmaceutical powder tableting.Int J Numer Meth Eng 62, 853–869.CrossRefGoogle Scholar
  24. 24.
    Sanchez-Castillo, al. (2003) Molecular dynamics simulations of granular compaction,Chemistry of Materials 15, 3417–3430.CrossRefGoogle Scholar
  25. 25.
    Rowe, al., eds (2003)Handbook of pharmaceutical excipients, 4th ed, American Pharmaceutical Association.Google Scholar
  26. 26.
    Thomson, G.H. and Larsen, A.H. (1996) DIPPR: Satisfying industry data needs.J. Chem. Eng. Data 41, 930–934.CrossRefGoogle Scholar
  27. 27.
    Kline, al. (1998) An overview of compiling, critically evaluating, and delivering reliable physical property data from AIChE DIPPR Projects 911 and 912.Fluid Phase Equilibr 150, 421–428.CrossRefGoogle Scholar

Copyright information

© International Society for Pharmaceutical Engineering 2006

Authors and Affiliations

  • Anthony J. Hlinak
    • 1
  • Kamal Kuriyan
    • 2
  • Kenneth R. Morris
    • 3
  • Gintaras V. Reklaitis
    • 4
  • Prabir K. Basu
    • 2
  1. 1.Global Pharmaceutical and Analytical SciencesAbbott LaboratoriesNorth ChicagoUSA
  2. 2.Discovery ParkPurdue UniversityWest LafayetteUSA
  3. 3.Department of Industrial and Physical PharmacyPurdue UniversityWest LafayetteUSA
  4. 4.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations