Israel Journal of Mathematics

, Volume 127, Issue 1, pp 303–316

An example of a rightq-ring

  • K. I. Beidar
  • Y. Fong
  • W.-F. Ke
  • S. K. Jain
Article

Abstract

We show that Ivanov’s classification of indecomposable non-local rightq-rings is incomplete and provide a complete classification. Next, we correct and sharpen Byrd’s classification of rightq-rings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. A. Byrd,Right self-injective rings whose essential ideals are two sided, Pacific Journal of Mathematics82 (1979), 23–41.MATHMathSciNetGoogle Scholar
  2. [2]
    C. Faith,Algebra I; Rings, Modules, and Categories, Springer-Verlag, Berlin, 1981.MATHGoogle Scholar
  3. [3]
    D. A. Hill,Semi-perfect q-rings, Mathematische Annalen200 (1973), 113–121.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Ivanov,Non-local rings whose ideals are quasi-injective, Bulletin of the Australian Mathematical Society6 (1972), 45–52.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Ivanov,Addendum to “Non-local rings whose ideals are quasi-injective”, Bulletin of the Australian Mathematical Society12 (1975), 159–160.MATHMathSciNetGoogle Scholar
  6. [6]
    G. Ivanov,On a generalization of injective von Neumann rings, Proceedings of the American Mathematical Society124 (1996), 1051–1060.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. K. Jain,Rings whose cyclic modules have certain properties and the duals, inRing Theory, Vol. 25, Proceedings of the Ohio University Conference, 1976, Marcel Dekker, 1977.Google Scholar
  8. [8]
    S. K. Jain, S. R. López-Permouth and S. R. Syed,Rings with quasi-continuous right ideals, Glasgow Mathematical Journal41 (1999), 167–181.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    S. K. Jain, S. H. Mohamed and S. Singh,Rings in which every right ideal is quasi-injective, Pacific Journal of Mathematics31 (1969), 73–79.MATHMathSciNetGoogle Scholar
  10. [10]
    A. Koehler,Rings for which every cyclic module is quasi-projective, Mathematische Annalen189 (1970), 407–419.CrossRefMathSciNetGoogle Scholar
  11. [11]
    A. Koehler,Rings with quasi-injective cyclic modules, The Quarterly Journal of Mathematics. Oxford25 (1974), 51–55.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. H. Mohamed,Rings whose homomorphic images are q-rings, Pacific Journal of Mathematics35 (1970), 727–735.MathSciNetGoogle Scholar
  13. [13]
    S. H. Mohamed,q-rings with chain conditions, Journal of the London Mathematical Society2 (1972), 455–460.MathSciNetGoogle Scholar
  14. [14]
    B. J. Müllear and S. Mohamed,Continuous and Discrete Modules, Cambridge University Press, 1990.Google Scholar
  15. [15]
    Y. Utumi,On continuous rings and self-injective rings, Transactions of the American Mathematical Society118 (1965), 158–173.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    R. Wisbauer,Foundations of Module and Ring Theory, Gordon and Breach, London, 1991.MATHGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2002

Authors and Affiliations

  • K. I. Beidar
    • 1
  • Y. Fong
    • 1
  • W.-F. Ke
    • 1
  • S. K. Jain
    • 2
  1. 1.Department of MathematicsNational Cheng-Kung UniversityTainanTaiwan
  2. 2.Department of MathematicsOhio UniversityAthensUSA

Personalised recommendations