Advertisement

Israel Journal of Mathematics

, Volume 132, Issue 1, pp 239–251 | Cite as

The range of the gradient of a LipschitzC 1-smooth bump in infinite dimensions

  • J. M. BorweinEmail author
  • M. Fabian
  • P. D. Loewen
Article

Abstract

If a Banach space has a LipschitzC 1-smooth bump function, then it admits other bumps of the same smoothness whose gradients exactly fill the dual unit ball and other reasonable figures. This strengthens a result of Azagra and Deville who were able to cover the dual unit ball.

Keywords

Banach Space Density Character Infinite Dimension Admissible Sequence Bump Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Azagra and R. Deville,James’ theorem fails for starlike bodies, Journal of Functional Analysis180 (2001), 328–346.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    D. Azagra and M. Jiménez-Sevilla,The failure of Rolle’s theorem in infinite dimensional Banach spaces, Journal of Functional Analysis182 (2001), 207–226.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    D. Azagra and M. Jiménez-Sevilla,On the size of the set of gradients of bump functions and starlike bodies on the Hilbert space, Bulletin de la Société Mathématique de France, to appear.Google Scholar
  4. [4]
    S. M. Bates,On smooth nonlinear surjections of Banach spaces, Israel Journal of Mathematics100 (1997), 209–220.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    J. M. Borwein, M. Fabian, I. Kortezov and P. D. Loewen,The range of the gradient of a continuously differentiable bump, Journal of Nonlinear and Convex Analysis2 (2001), 1–19.zbMATHMathSciNetGoogle Scholar
  6. [6]
    H. Cartan,Calcul différentiel, formes différentielles, Herman, Paris, 1967.Google Scholar
  7. [7]
    M. Jiménez-Sevilla and J. P. Moreno,A note on norm attaining functionals, Proceedings of the American Mathematical Society126 (1998), 1989–1997.CrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 2002

Authors and Affiliations

  1. 1.CECMSimon Fraser UniversityBurnabyCanada
  2. 2.Mathematical InstituteCzech Academy of SciencesPraha 1Czech Republic
  3. 3.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations