Israel Journal of Mathematics

, Volume 132, Issue 1, pp 221–238 | Cite as

Genus two extremal surfaces: Extremal discs, isometries and Weierstrass points

Article

Abstract

It is known that the largest disc that a compact hyperbolic surface of genusg may contain has radiusR=cosh−1(1/2sin(π/(12g−6))). It is also known that the number of such (extremal) surfaces, although finite, grows exponentially withg. Elsewhere the authors have shown that for genusg>3 extremal surfaces contain only one extremal disc.

Here we describe in full detail the situation in genus 2. Following results that go back to Fricke and Klein we first show that there are exactly nine different extremal surfaces. Then we proceed to locate the various extremal discs that each of these surfaces possesses as well as their set of Weierstrass points and group of isometries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Bacher and A. Vdovina,Counting 1-vertex triangulations of oriented surfaces, Prépublications de L’Institut Fourier No. 447, 1998.Google Scholar
  2. [2]
    C. Bavard,Disques extrémaux et surfaces modulaires, Annales de la Faculté des Sciences de Toulouse V, No. 2, 1996, pp. 191–202.MathSciNetGoogle Scholar
  3. [3]
    A. F. Beardon,The Geometry of Discrete Groups, Graduate Texts in Mathematics Vol. 91, Springer-Verlag, Berlin, 1983.MATHGoogle Scholar
  4. [4]
    O. Bolza,On binary sextics with linear transformations into themselves, American Journal of Mathematics10 (1888), 47–60.CrossRefMathSciNetGoogle Scholar
  5. [5]
    R. Fricke and F. Klein,Vorlesungen über die Theorie der automorphen Funktionen, Teubner, Leipzig, 1897.Google Scholar
  6. [6]
    E. Girondo and G. González-Diez,On extremal discs inside compact hyperbolic surfaces, Comptes Rendus de l’Académie des Sciences, Paris, SérieI 329 (1999), 57–60.MATHGoogle Scholar
  7. [7]
    A. Haas and P. Susskind,The geometry of the hyperelliptic involution in genus 2, Proceedings of the American Mathematical Society (1)105 (1989), 159–165.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Harer and D. Zagier,The Euler characteristic of the moduli space of curves, Inventiones Mathematicae85 (1986), 457–486.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    T. Jorgensen and M. Näätänen,Surfaces of genus 2: generic fundamental polygons, The Quarterly Journal of Mathematics. Oxford (2)33 (1982), 451–461.CrossRefGoogle Scholar
  10. [10]
    T. Kuusalo and M. Näätänen,Geometric uniformization in genus 2, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica Dissertationes20 (1995), 401–418.MATHGoogle Scholar
  11. [11]
    A. M. Macbeath,Generic Dirichlet regions and the modular group, Glasgow Mathematical Journal27 (1985), 129–141.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    D. Mumford,Tata Lectures on Theta II, Birkhäuser, Basel, 1984.MATHGoogle Scholar
  13. [13]
    M. Näätänen,Regular n-gons and Fuchsian groups, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica Dissertationes7 (1982), 291–300.MATHGoogle Scholar
  14. [14]
    M. Näätänen and T. Kuusalo,On arithmetic genus 2 subgroups of triangle groups, Contemporary Mathematics201 (1997), 21–28.Google Scholar
  15. [15]
    J. Schiller,Moduli for Special Riemann Surfaces of genus 2, Transactions of the American Mathematical Society144 (1969), 95–113.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 2002

Authors and Affiliations

  1. 1.Departamento de Matematicas C. Universitaria de CantoblancoUniversidad Autonoma de MadridMadridSpain

Personalised recommendations