Biological Trace Element Research

, Volume 67, Issue 1, pp 85–92 | Cite as

Alterations in serum and brain trace element levels after antidepressant treatment

Part I. Zinc
  • Gabriel Nowak
  • Małgorzata Schlegel-Zawadzka
Original Articles

Abstract

We have studied the effect of chronic treatment with imipramine, citalopram and electroconvulsive shock (ECS) on serum and brain zinc levels in rats. Chronic treatment with citalopram (but not with imipramine or ECS) significantly (approx 20%) increased the serum zinc level. Chronic treatment with both drugs slightly (by approx 10%) increase the zinc level in the hippocampus and slightly decreased it in the cortex, cerebellum and basal forebrain. Calculation of the ratio hippocampus/brain region within each group demonstrated a significantly (approx 20%) higher value after treatment with either imipramine or citalopram. Moreover, chronic ECS induced a significant increase (by 30%) in the zinc level in the hippocampus and also a slight increase (by 11–15%) in the other brain regions. Thus, these different antidepressant therapies induced an elevation of the hippocampal zinc concentration, which indicates a significant role of zinc in the mechanism of antidepressant therapy.

Index entries

Antidepressant drugs ECS zinc level brain serum, rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. J. Frederickson, Neurobiology of zinc and zinc-containing neurons,Int. Rev. Neurobiol. 31, 145–238 (1989).PubMedGoogle Scholar
  2. 2.
    N. L Harrison, and S. J. Gibbons, Zn2+: an endogenous modulator of ligand and voltage-gated ion channels,Neuropharmacology 33, 935–952 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    G. L. Westbrook and M.L. Mayer, Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons,Nature 328, 640–643 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    X. Xie and T. Smart, A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission,Nature 349, 521–524 (1991).PubMedCrossRefGoogle Scholar
  5. 5.
    F. M. Zhou and J. J. Hablitz, Zinc enhances GABAergic transmission in rat neocortical neurons,J. Neurophysiol. 70, 1264–1269 (1993).PubMedGoogle Scholar
  6. 6.
    M. Maes, P. C. D’Haese, S. Scharpe, P. D. D’Hondt, P. Cosyns, and M. E. De Broe, Hypozincemia in depression,J. Affect. Disorders 31, 135–140 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Maes, E. Vandoolaeghe, H. Neels, P. Demedts, A. Wauters, H. Y. Meltzer, C. et al., Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness,Biol. Psychiat. 42, 349–358 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    I. J. McLoughlin and J. S. Hodge, Zinc in depressive disorder,Acta Psychiatr. Scand. 82, 451–453 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Maj, E. Przegaliński, and E. Mogilnicka, Hypotheses concerning the mechanism of action of antidepressant drugs,Rev. Physiol. Biochem. Pharmacol. 100, 1–74 (1984).PubMedGoogle Scholar
  10. 10.
    N.-Y. Huang, R. T. Layer, and P. Skolnick, Is adaptation of NMDA receptors an obligatory step in antidepressant action? InAntidepressants. New pharmacological strategies, P. Skolnick ed., Humana, Totowa, NJ, pp. 125–143 (1997).Google Scholar
  11. 11.
    P. Skolnick, R. T. Layer, P. Popik, G. Nowak, I. A. Paul, and R. Trullas, R. Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression,Pharmacopsychiatry 29, 23–26 (1996).PubMedCrossRefGoogle Scholar
  12. 12.
    I. J. Reynolds and R. J. Miller, Tricyclic antidepressants block N-methyl-D-aspartate receptors: similarities to the action of zinc,Br. J. Pharmacol. 95, 95–102 (1988).PubMedGoogle Scholar
  13. 13.
    L.E. Hollister, J. G. Csernansky,Clinical Pharmacology of Psychotherapeutic Drugs, 3rd ed., Churchill Livingston, New York (1990).Google Scholar
  14. 14.
    S. A. Montgomery, Efficacy in long-term treatment of depression,J. Clin. Psychiatry 57 (suppl. 2), 24–30 (1996).PubMedGoogle Scholar
  15. 15.
    G. Nowak, Y. Li, and I. A. Paul, Adaptation of cortical but not hippocampal glutamate-NMDA receptors after chronic citalopram treatment,Eur. J. Pharmacol. 295, 75–85 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    G. Nowak, R. Trullas, R. T. Layer, P. Skolnick, and I. A. Paul, Adaptive changes in the N-methyl-D-aspartate receptor complex after chronic treatment with imipramine and 1-aminocyclopropanecarboxylic acid,J. Pharmacol. Exp. Ther. 265, 1380–1386 (1993).PubMedGoogle Scholar
  17. 17.
    I. A. Paul, R. T. Layer, P. Skolnick, and G. Nowak, Adaptation of the NMDA receptor in rat cortex following chronic electroconvulsive shock or imipramine,Eur. J. Pharmacol.-Molec. Pharm. 247, 305–311 (1993).CrossRefGoogle Scholar
  18. 18.
    I. A. Paul, G. Nowak, R. T. Layer, P. Popik, and P. Skolnick, Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments,J. Pharmacol. Exp. Ther. 269, 95–102 (1994).PubMedGoogle Scholar
  19. 19.
    C. Steward, K. Jeffrey, and I. Reid, LTP-like synaptic efficacy changes following electroconvulsive stimulation,NeuroReport 5, 1041–1044 (1994).CrossRefGoogle Scholar
  20. 20.
    C. Steward and I. Reid, Electroconvulsive stimulation and synaptic plasticity in the rat,Brain Res. 620, 139–141 (1993).CrossRefGoogle Scholar
  21. 21.
    P. S. Terse and H. L. Komiskey, Modulation of a competitive N-methyl-D-aspartate receptor antagonist binding by zinc oxide,Brain Res. 744, 347–350 (1997).PubMedCrossRefGoogle Scholar
  22. 22.
    J. W. Olney, Role of excitotoxins in developmental neuropathology,APMIS 101 (suppl. 40), 103–112 (1993).Google Scholar
  23. 23.
    H. Monyer, N. Burnashev, D. J. Laurie, B. Sakmann, and P. H. Seeburg, Developmental and regional expression in the rat brain and functional properties of four NMDA receptors,Neuron 12, 529–540 (1994).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Yoshikawa, M. Ikeda, H. Tomita, A. Kida, T. Kubo, K. Ishikawa, et al., Drug influence on intestinal zinc absorption.Chem. Abstr. 126, 90 (1997).Google Scholar

Copyright information

© Humana Press Inc.. 1999

Authors and Affiliations

  • Gabriel Nowak
    • 1
  • Małgorzata Schlegel-Zawadzka
    • 2
  1. 1.Department of Pharmacology, Institute of PharmacologyPolish Academy of SciencesKrakówPoland
  2. 2.Department of Food Chemistry and Nutrition, Collegium MedicumJagiellonian UniversityKrakówPoland

Personalised recommendations