Biological Trace Element Research

, Volume 65, Issue 1, pp 7–17 | Cite as

Dialyzability of iron, zinc, and copper of different types of infant formulas marketed in Spain

  • R. García
  • A. Alegría
  • R. Barberá
  • R. Farre
  • M. J. Lagarda
Original Articles


The bioavailability of trace elements in infant formulas is affected by different physiological and dietetic factors. In vitro methods based on element dialyzability have been proposed to estimate the bioavailability. Infant formulas of the same type but from different manufacturers can differ in the salt used for supplementation and in the contents of other components that can affect mineral bioavailability. The aim of our study is to estimate the dialyzability of iron, zinc, and copper of formulas marketed in Spain, in order to detect possible differences in formulas of the same type coming from different manufacturers. At the same time, the effects of the type of formula, the composition of the protein fraction, and the mineral content on the element dialyzability are also studied. Differences are found in the dialysis percentages of the elements studied in formulas of the same type but from different manufacturers. The formulas giving the highest dialysis percentages for the three considered elements are the hypoallergenic ones based on protein hydrolysates. No differences are observed in formulas having whey or casein as the main protein fraction. Significant correlations are obtained between the element contents and the dialyzability of the elements.

Index entries

Trace elements Infant formulas Bioavailability in vitro digestion dialyzability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ESPGAN Committee on Nutrition, Guidelines on infant nutrition. I. Recommendations for the composition of an adapted formula,Acta Paediatr. Scand. 262 (Suppl.), 1–20 (1977).Google Scholar
  2. 2.
    ESPGAN Committee on Nutrition, Guidelines on infant nutrition. II. Recommendations for the composition of a follow-up formula,Acta Paediatr. Scand. 287 (Suppl.), 1–25 (1981).Google Scholar
  3. 3.
    ESPGAN Committee on Nutrition, Guidelines on infant nutrition—nutrition and feeding of preterm infants,Acta Paediatr. Scand. 336 (Suppl.), 3–14 (1987).Google Scholar
  4. 4.
    ESPGAN Committee on Nutrition, Comment on the composition of soy protein based infant and follow-up formulas,Acta Paediatr. Scand. 79, 1–13 (1990).Google Scholar
  5. 5.
    Codex Alimentarius Commission,Codex Standards for Foods for Spedal Dietary Uses Including Foods for Infants and Young Children and Related Code of Hygienic Practice, Joint FAO/WHO Food Standards Programme, FAO, Rome (1982).Google Scholar
  6. 6.
    Codex Alimentarius Commission,Draft Standards for Follow-up Formula, Joint FAO/WHO Food Standards Programme, FAO, Rome (1987).Google Scholar
  7. 7.
    ECC, Commission Directive 91/321/EEC of 14 May 1991 on infant formulae and follow-on formulae, No. L 175, 4/7/1991, pp. 35–49 (1991).Google Scholar
  8. 8.
    B. Lönnerdal, Effects of milk and milk components on calcium, magnesium, and trace element absorption during infancy,Physiol. Rev. 77(3), 643–669 (1997).PubMedGoogle Scholar
  9. 9.
    C. F. Mills, Dietary interactions involving the trace elements,Annu. Rev. Nutr. 5, 173–193 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Fairweather-Tait, Bioavailability of trace elements,Food Chem. 43, 213–217 (1992).CrossRefGoogle Scholar
  11. 11.
    S. Fairweather-Tait and R. F. Hurrell (compiled by), Bioavailability of minerals and trace elements,Nutr. Res. Rev. 9, 295–324 (1996).CrossRefGoogle Scholar
  12. 12.
    B. S. Naransiga Rao and T. Prabhavathi, An in vitro method for predicting the bioavailability of iron from foods,Am. J. Clin. Nutr. 31, 169–175 (1978).Google Scholar
  13. 13.
    D. D. Miller, B. R. Schricker, R. R. Rasmussen, and D. V. Campen, An in vitro method for estimation of iron availability from meals,Am. J. Clin. Nutr. 34, 2248–2256 (1981).PubMedGoogle Scholar
  14. 14.
    H. M. Crews, A. Burrell, and D. J. McWeeny, Preliminary enzymolysis studies on trace element extractability from food,J. Sci. Food Agric. 34, 997–1004 (1983).CrossRefGoogle Scholar
  15. 15.
    T. Hazell and I. T. Johnson, In vitro estimation of iron availability from a range of plant foods; influence of phytate, ascorbate and citrate,Br. J. Nutr. 57, 223–233 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    A. M. Minihane, T. E. Fox, and S. J. Fairweather-Tait, A continuous flow in vitro method to predict bioavailability of Fe from foods, inBIOAVAILABILITY’93, Nutritional, Chemical and Food Processing Implications of Nutrient Availability, Proceedings Part 2, U. Schlemmer, ed., Bundesforschungsanstalt für Ernährung, Karlsruhe, Germany, pp. 175–179 (1993).Google Scholar
  17. 17.
    M. G. E. Wolters, H. A. W. Schreuder, G. V. D. Heurel, M. J. V. Lonkhuijsen, R. J. J. Hermus, and A. G. J. Voragen, A continuous in vitro method for estimation of the bioavailability of minerals and trace elements in foods: application to breads varying in phytic acid content,Br. J. Nutr. 69, 849–861 (1993).PubMedCrossRefGoogle Scholar
  18. 18.
    L. Shen, J. Luten, H. Robberecht, J. Bindels, and H. Deelstra, Modification of an in-vitro method for estimating the bioavailability of zinc and calcium from foods, Z.Lebensm. Unters. Forsch 199, 442–445 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Luten, H. Crews, A. Flynn, P. Van Dael, P. Kastenmayer, R. Hurrell, et al, Interlaboratory trial on the determination of the in vitro dialysability from food,J. Sci. Food Agric. 72, 415–424 (1996).CrossRefGoogle Scholar
  20. 20.
    ICSH: International Committee for Standardization in Hematology, Proposed recommendations for measurement of serum iron in human blood,J. Clin. Pathol. 24, 334–335 (1971).CrossRefGoogle Scholar
  21. 21.
    G. E. P. Box, W. G. Hunter, and J. S. Hunter,Estadística para Investigadores, Editorial Reverté S. A., Barcelona (1988).Google Scholar
  22. 22.
    P. E. Johnson and G. W. Evans, Relative zinc availability in human breast milk, infant formulas, and cow’s milk,Am. J. Clin. Nutr. 31, 416–21 (1978).PubMedGoogle Scholar
  23. 23.
    B. Sandström, C. L. Keen, and B. Lönnerdal, An experimental model for studies of zinc bioavailability from milk and infant formulas using extrinsic labeling,Am. J. Clin. Nutr. 38, 420–428 (1983).PubMedGoogle Scholar
  24. 24.
    C. E. Casey, P. A. Walravens, and M. K. Hambidge, Availability of zinc: loading test with human milk, cow’s milk and infant formulas,Pediatrics 68, 394–396 (1981).PubMedGoogle Scholar
  25. 25.
    B. Sandström, A. Cederblad, and B. Lönnerdal, Zinc absorption from human milk, cow’s milk and infant formulas,Am. J. Dis. Child. 137, 726–729 (1983).PubMedGoogle Scholar
  26. 26.
    B. Lönnerdal, A. Cederblad, L. Davidsson, and B. Sandström, The effect of individual components of soy formula and cow’s milk formula on zinc bioavailability,Am. J. Clin. Nutr. 40, 1064–107 (1983).Google Scholar
  27. 27.
    E. E. Ziegler, R. E. Serfas, R. A. Baillie, and S. E. Nelson, Absorption of zinc (70Zn) from breast milk and from infant formulas,FASEB J. 7, A 201 (abstract) (1993).Google Scholar
  28. 28.
    B. Lönnerdal, J. G. Bell, A. G. Hendrickx, R. A. Burns, and C. L. Keen, Copper absorption from human milk, cow’s milk and infants formulas using a suckling rat model,Am. J. Clin. Nutr. 42, 836–844 (1985).PubMedGoogle Scholar
  29. 29.
    R. Hurrell, S. Lynch, T. Trinidad, A. Dassenko, and J. Cook, Iron absorption in humans as influenced by bovine milk proteins,Am J. Clin. Nutr. 49, 546–552 (1989).PubMedGoogle Scholar
  30. 30.
    B. Lönnerdal B. M. Yuen, and S. Huang, Calcium, iron, zinc, copper and manganese bioavailability from infant formulas and weaning diets assessed in rat pups,Nutr. Res. 14(10), 1535–1548 (1994).CrossRefGoogle Scholar
  31. 31.
    S. Rudloff and B. Lönnerdal, Calcium and zinc retention from protein hydrolysate formulas in suckling rhesus monkeys,Am. J. Dis. Child. 146, 588–591 (1992).PubMedGoogle Scholar
  32. 32.
    S. M. Lynch and J. J. Strain, Effects on skim milk powder, whey or casein on tissue trace element status and antioxidant enzyme activities in rats fed control and copperdeficient diets,Nutr. Res. 10, 449–460 (1990).CrossRefGoogle Scholar
  33. 33.
    U. M. Saarinen and M. A. Siimes, Iron absorption from infant formula and the optimal level of iron supplementation,Acta Paediatr. Scand. 66, 719–722 (1977).PubMedGoogle Scholar
  34. 34.
    E. E. Ziegler, R. E. Serfass, S. E. Nelson, R. Figueroa-Colón, B. B. Edwards, R. S. Houk, et al., Effect of low zinc intake on absorption and excretion of zinc by infants studied with70Zn as extrinsic tag,J. Nutr. 119, 1647–1653 (1989).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • R. García
    • 1
  • A. Alegría
    • 1
  • R. Barberá
    • 1
  • R. Farre
    • 1
  • M. J. Lagarda
    • 1
  1. 1.Nutrition and Food Chemistry, Faculty of PharmacyUniversity of ValenciaBurjassotSpain

Personalised recommendations