Biological Trace Element Research

, Volume 61, Issue 1, pp 61–70

Zinc and copper concentrations in serum from Spanish women during pregnancy

  • F. Martín-Lagos
  • M. Navarro-Alarcón
  • C. Terrés-Martos
  • H. López-García de la Serrana
  • V. Pérez-Valero
  • M. C. López-Martínez
Original Articles

Abstract

A cross-sectional study of serum zinc (Zn) and copper (Cu) levels in 31 healthy pregnant women and 51 healthy, nonpregnant controls living in the Mediterranean area of Granada, Spain, was performed. The subjects were divided into two groups: Group A, consisted of pregnant women in three categories according to the trimester of pregnancy, and Group B consisted of nonpregnant women acting as controls.

In pregnant women, serum Zn levels were found from 0.300-1.340 mg/L and serum Cu from 0.936-2.304 mg/L, whereas in the nonpregnant women group, the mean serum levels were 0.947 ±0.265 mg/L for Zn and 1.092 ±0.365 mg/L for Cu. Serum Zn progressively decreased with gestation. Mean Zn levels were 0.829 ±0.253, 0.846 ±0.329, and 0.620 ±0.142 mg/L, corresponding to the first, second, and third trimesters of pregnancy, respectively.

Serum Zn concentrations were significantly lower in pregnant women as compared to controls: 0.712 ±0.236 mg/L vs 0.947 ±0.265 mg/L, respectively (p < 0.05).

In contrast, Cu levels increased with period of gestation from 1.053 ±0.498 mg/L in the first trimester to 1.616 ±0.304 mg/L in the second and 1.689 ±0.344 mg/L in the third. Serum Cu levels in the second and third trimesters of pregnancy were significantly higher (p < 0.05) than those determined during the first trimester and for nonpregnant controls. Both Zn and Cu during pregnancy did not appear to be dependent on the subject’s age (p > 0.05).

Index Entries

Copper zinc pregnancy serum Spanish women gestation period 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. E. Johnson, D. B. Milne, and G. L. Lykken, Effects of age and sex on copper absorption, biological half-life and status in humans,Am. J. Clin. Nutr.,56, 917–925 (1992).PubMedGoogle Scholar
  2. 2.
    R. A. Disilvestro and G. P. Carlson, Effects of moderate copper deficiency on carbon tetrachloride-induced hepatotoxicity in rats,Proc. Soc. Exp. Biol. Med.,197, 32–35 (1991).PubMedGoogle Scholar
  3. 3.
    J. R. Turnlund, Copper, inModern Nutrinon in Health and Disease, vol. 1, 8th ed., M. E. Shils, J. A. Olson and M. Shike, eds., Lea and Febiger, Philadelphia, pp. 231–241 (1994).Google Scholar
  4. 4.
    J. C. King and C. L. Keen, Zinc, inModern Nutrition in Health and Disease, vol. 1, 8th ed., M. E. Shils, J. A. Olson, and M. Shike eds., Lea and Febiger, Philadelphia, pp. 214–230 (1994).Google Scholar
  5. 5.
    G. Jia, Analysis of serum levels of selenium, zinc, and copper in 132 patients with malignant tumors,Chung. Hua. Yu. Fang. I. Hsueh. Tsa. Chich. 25, 205–207 (1991).Google Scholar
  6. 6.
    E. L. Ma and Z.M. Jiang, Ion-exchange chromatography in simultaneous determination of serum, copper and zinc levels in patients with cancer of digestive tract,Chim. Med. J. Engl.,106, 118–121 (1993).Google Scholar
  7. 8.
    D. J. Malvy, B. Burtschy, J. Arnaud, D. Sommelet, G. Leverger, L. Dostalova, and J. Drucker, Serum beta-carotene and antioxidant micronutrients in children with cancer, “Cancer in children and antioxidant micronutrients,” The French Study Group,Inst. J. Epidemiol. 22, 761–771 (1993).CrossRefGoogle Scholar
  8. 9.
    K. Overvad, D. Y. Wang, J. Olsen, D. S. Allen, E. B. Thorling, R. D. Bulbrook, and J. L. Hayward, Copper in human mammary carcinogenesis: a case-cohort study,Am. J. Epidemiol. 137, 409–414 (1993).PubMedGoogle Scholar
  9. 10.
    D. Yoshida, Y. Ikeda, and S. Nakazawa, Quantitative analysis of copper, zinc, and copper/zinc ratio in selected human brain tumors,J. Neurol. Oncol. 16, 109–115 (1993).CrossRefGoogle Scholar
  10. 11.
    I. Yücel, F. Arpaci, A. özet, B. Döner, T. Karayilanoglu, A. Sayar, and ö. Berk, Serum copper and zinc levels and copper/zinc ratio in patients with breast cancer,Biol. Trace Element Res. 40, 31–38 (1994).Google Scholar
  11. 12.
    G. V. Vahouny, Trace elements and cardiovascular disease,Nutr. Toxicol. 1, 135–161 (1982).Google Scholar
  12. 13.
    I. I. Dementera, M. lu. Andrianova, S. L. Dzemeshkevich, A. G. Iavarovskii, and L. S. Lokslin, Changes in the content of microelements: copper, zinc and iron in the blood of patients following cardiopulmonary bypass,Anesteziol. Reanimatol. 4, 50–53 (1993).Google Scholar
  13. 14.
    V. Govindaraju, N. Prabhudev, M. Gurappa, V. S. Jawali, P. M. Chandrasekhara, and C. N. Manjunath, Zinc in rheumatic heart valves,J. Assoc. Phys. India 41, 653–654 (1993).Google Scholar
  14. 15.
    T. Magalova, A. Brtkova, A. Bederova, I. Kajaba, and I. Puchonova, Serum copper and zinc in industrial centers in Slovakia,Biol. Trace Element Res. 40, 225–235 (1994).Google Scholar
  15. 16.
    O. Oster, Trace element concentrations (Cu, Zn, Fe) in serum from patients with dilater cardiomyopathy,Clin. Chimica Acta 214, 209–218 (1993).CrossRefGoogle Scholar
  16. 17.
    O. Oster, M. Dahm, and H. Oelert, Element concentrations (selenium, copper, zinc, iron, magnesium, potassium, phosphorous) in heart tissue of patients with coronary heart disease correlated with physiological parameters of the heart.Eur. Heart. J. 14, 770–774 (1993).PubMedGoogle Scholar
  17. 18.
    W. J. Macganity, E. B. Dawson, and A. Fogelman, Nutrition in pregnancy and lactation, inModern Nutrition in Health and Disease, vol. 1, 8th ed., M. E. Shils, J. A. Olson, and M. Shike, eds., Lea and Febiger, Philadelphia, pp. 705–726 (1994).Google Scholar
  18. 19.
    C. A. Swanson and J. C. King, Zinc and pregnancy outcome,Am. J. Clin Nutr. 4, 763–771 (1987).Google Scholar
  19. 20.
    C. L. Keen and L. S. Hurley, Zinc and reproduction: effects of deficiency on fetal and postnatal development, inZinc in Human Biology, C. F. Mills, ed., International Life Sciences Institute, London, pp. 173–182 (1989).Google Scholar
  20. 21.
    J. Apgar and G. A. Everet, Low zinc intake affects maintenance of pregnancy in guinea pigs,J. Nutr. 121, 192–200 (1991).PubMedGoogle Scholar
  21. 22.
    S. C. Cunnane and J. Yang, Zinc deficiency impairs whole-body accumulation of plyunsaturates and increases the utilization of [1-14] linoleaate for the novo lipid syntesis in pregnant rats,Can. J. Physiol. Pharmacol. 73, 1246–1252 (1995).PubMedGoogle Scholar
  22. 23.
    R. S. Bedwal and A. Bahuguma, Zinc, copper and selenium in reproduction,Experientia 50, 626–640 (1994).PubMedCrossRefGoogle Scholar
  23. 24.
    R. L. Goldenberg, T. Tamura, Y. Neggers, R. L. Copper, K. E. Johnston, M. B. Dubard, and J. C. Hanth, The effect of zinc supplementation on pregnancy outcome,JAMA 274, 463–468 (1995).PubMedCrossRefGoogle Scholar
  24. 25.
    A. J. McMichael, I. E. Dreosti, G. T. Gibsson, Y. M. Hartshorne, R. A. Buckley, and D. P. Colley, A prospective study of serial maternal serum zinc levels and pregnancy outcome,Early Human Dev. 7, 59–69 (1982).CrossRefGoogle Scholar
  25. 26.
    A. S. Prasad, Zinc deficiency in women, infants and childrenJ. Am. Coll. Nutr. 15, 113–120 (1996).PubMedGoogle Scholar
  26. 27.
    R. M. Jeswani and S. N. Vani, A study of serum zinc levels in cord blood of neonates and their mothers,Indian J. Pediatr. 58, 683–686 (1991).PubMedGoogle Scholar
  27. 28.
    W. Wasowicz, P. Wolkamin, M. Bednarski, J. Gromadzinska, M. Sklodowska, and K. Grzybowska, Plasma trace element (Se, Zn, Cu) concentration in maternal and umbilical cord blood in Poland. Relation with birth weight gestational age, and parity,Biol. Trace Element Res. 38, 205–215 (1993).CrossRefGoogle Scholar
  28. 29.
    S. A. Wolfe, R. S. Gibson, S. L. Gadowsszky, and D.L. O’Connor, Zinc status of a group of pregnant adolescents at 36 weeks gestation living in southern Ontario,J. Am. Coll. Nutr. 13, 154–164 (1994).PubMedGoogle Scholar
  29. 30.
    E. Russanov, V. Banskalieva, and S. Lyutakova, Influence of sex hormones on the subcellular distribution of copper in sheep liver,Res. Vet. Sci. 30, 233–235 (1981).Google Scholar
  30. 31.
    W. W. Saylor and J.V. Downer, Copper and zinc distribution in the liver and oviduct of estrogen and testosterone treated,Nutr. Res. 6, 181–190 (1986).CrossRefGoogle Scholar
  31. 32.
    I. E. Dreosti, A. J. McMichael, G. T. Gibson, R. A. Buckley, J. M. Hasttone, and D. P. Colley,Nutr. Res. 2, 591–594 (1982).CrossRefGoogle Scholar
  32. 33.
    M. G. Crews, L. J. Taper, and S.J. Ritchey, Effect of oral contraceptive agents on copper and zinc balance in young women,Am. J. Clin. Nutr. 33, 1940–1944 (1980).PubMedGoogle Scholar
  33. 34.
    S. C. Vir and A. H. G. Love, Zinc and copper nutriture of women taking oral contraceptive agents,Am. J. Clin. Nutr. 34, 1479–1483 (1981).PubMedGoogle Scholar
  34. 35.
    M. A. Jankowski, J. Y. Urin-Hare, R. B. Rucker, J. M. Rogers, and C. L. Keen, Maternal zinc deficiency, but not copper deficiency or diabetes, results in increased embryogenic cell death in the rat: implications for mechanisms underlying abnormal development,Teratology 51, 85–93 (1995).PubMedCrossRefGoogle Scholar
  35. 36.
    C. Terres-Martos, M. Navarro-Alarcon, E Martin-Lagos, H. Lopez-García de la Serrana, and M. C. Lopez-Martinez, Determination of copper level in serum of healthy subjects by atomic absorption spectormetry,Sci. Total Environ. 198, 97–103 (1997).PubMedCrossRefGoogle Scholar
  36. 37.
    R. B. Williams, N. T. Davies, and L. Mcdonald, The effects of pregnancy and lactation in copper and zinc retention in rat,Br. J. Nutr. 38, 407–416 (1977).PubMedCrossRefGoogle Scholar
  37. 38.
    F. Martin-Lagos, M. Navarro-Alarcón, C. Terrés-Martos, H. López-García de la Serrana, and M. C. López-Martónez, Serum zinc levels in healthy subjects from southeastern Spain,Biol. Trace Element Res., this issue.Google Scholar
  38. 39.
    P. J. Agget and J.T. Harries, Current status of zinc in health and disease states,Arch. Dis. Child. 54, 909–917 (1979).Google Scholar
  39. 40.
    K. M. Hambidge, J. F. Krebs, M. A. Jacobs, A. Favier, L. Guyette, and D. N. Ikle, Zinc nutritional status during pregnancy: a longitudinal study,Am. J. Clin. Nutr. 37, 429–442 (1983).PubMedGoogle Scholar
  40. 41.
    R. Veena, A. P. Narang, A. W. Banday, and U. K. Bhan, Copper and zinc levels in maternal and fetal cord blood,Int. J. Obstet. 35, 47–49 (1991).CrossRefGoogle Scholar
  41. 42.
    H. K. Garg, K. C. Singhal, and Z. Arshad, A study of oral zinc supplementation during pregnancy on pregnancy outcome,Indian J. Physiol. 37, 276–284 (1993).Google Scholar
  42. 43.
    E. B. Dawson, J. Albers, and W. J. McGanity, Serum zinc changes due to iron supplementation in teen-age pregnancy,Am. J. Clin. Nutr. 50, 848–852 (1989).PubMedGoogle Scholar
  43. 44.
    J. Metcoff, J. B. Costiloe, W. M. Crosby, L. Bentle, D. Seshachalam, S. S. Sandstead, E. Bodwell, F. Weaver, and P. E. McClain, Maternal nutrition and fetal outcome,Am. J. Clin. Nutr. 34, 708–721 (1981).PubMedGoogle Scholar
  44. 45.
    Y. H. Neggers, G. R. Cutter, J. O. Alvarez, R. L. Goldenberg, R. Acton, R. C. Go, and J. M. Reseman, The relationship between maternal serum zinc levels during pregnancy and birthweight,Early Hum. Dev. 25, 75–85 (1991).PubMedCrossRefGoogle Scholar
  45. 46.
    J. Arnaud, A. Prual, P. Preziosi, F. Cherouvrier, A. Favier, P. Galan, and S. Herberg, Effect of iron supplementation during pregnancy on trace element (Cu. Se, Zn) concentrations in serum and breast milk from Nigerian women,Ann. Nutr. Metab. 37, 262–271 (1993).PubMedCrossRefGoogle Scholar
  46. 47.
    H. K. Garg, K. C. Singhal, and Z. Arshad, Effect of oral zinc supplementation on copper and hemoglobin levels in pregnant women,Indian J. Physiol. Pharmacol. 38, 272–276 (1994).PubMedGoogle Scholar
  47. 48.
    M. Casanova Bellido, A. M. Moreno Vázquez, B. Ferriz Mas, M. Casanova Roman, S. Rico de Cos, and J. M. Tapia Barros, Copper in the neonatal period. Maternal-fetal relations,An. Esp. Pediatr. 44, 145–148 (1996).Google Scholar
  48. 49.
    J. Petros, O. Kosut, and D. Pomyjova, The effect of zinc on pregnancy in women working in heavy industry,Cesk. Gynekol. 56, 11–14 (1991).PubMedGoogle Scholar
  49. 50.
    J. Arnaud, P. Preziosi, L. Mashako, P. Galan, C. Nisbn, A. Favier, C. Kapongo, and S. Herberg, Serum trace elements in Zairian mothers and their newborns,Eur. J. Clin. Nutr. 48, 341–348 (1994).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • F. Martín-Lagos
    • 1
  • M. Navarro-Alarcón
    • 1
  • C. Terrés-Martos
    • 1
  • H. López-García de la Serrana
    • 1
  • V. Pérez-Valero
    • 2
  • M. C. López-Martínez
    • 1
  1. 1.Department of Nutrition and Bromatology, Faculty of PharmacyUniversity of GranadaGranadaSpain
  2. 2.Laboratory of Clinical AnalysisHospital of MotrilMotrilSpain

Personalised recommendations