Oxidative stress during selenium deficiency in seedlings ofTrigonella foenum-graecum and mitigation by mimosine part II. glutathione metabolism

  • T. R. Santosh
  • M. Sreekala
  • K. Lalitha
Article

Abstract

Actaptive alterations in glutathione (GSH) metabolism were studied during oxidative stress induced by selenium (Se) deficiency in germinating seedlings ofTrigonella foenum- graecum grown for 72 h and the response to supplementation individually of Se or mimosine was explored. Growth enhancement with improved mitochondrial efficiency was elicited by supplementation of Se at 0.5-0.75 ppm or mimosine at 0.1-0.2 mM. Total thiol and protein levels of mitochondrial and soluble fractions, in general, did not vary significantly with supplementation of either Se or mimosine except that the mitochondrial protein levels in mimosine groups (0.1-0.2 mM) decreased by 20–30%. Mitochondrial glutathione peroxidase (GSH-Px) increased by twofold in activity toward H2O2, cumene hydroperoxide (CHP), and t-butyl hydroperoxide (tBHP) in Se groups, and by 50–60% increase toward H2O2 and CHP but by a twofold enhancement in enzyme activity with tBHP in mimosine groups. Soluble GSH-Px activity increased by 30–40% only in mimosine groups and remained unaltered in Se groups. Glutathione S-transferase activity (GST) in the soluble fraction of both Se and mimosine groups increased dramatically by fivefold to sixfold. Distinct differences were noted in the response of the stressed seedlings toward exposure to Se or mimosine and included a decline in glutathione reductase (GR) activity by 50–60% in both mitochondria and soluble fractions of Se groups and an increase in GR activity of the mitochondria by twofold and of the soluble enzyme activity by 30% in the mimosine groups. Mimosine exposure resulted in a dose-dependent decrease in the γ-glutamyl transpeptidase levels, but, in contrast, a significant enhancement by 50% was noted in the Se group at 0.75 ppm. The results including the differential response of GR activity to Se or mimosine supplementation are reflective of an effective reductive environment in Se groups and increased turnover of GSH in the presence of mimosine.

Index Entries

Selenium: Oxidative stress deficiency seed germination Seed germination: glutathione metabolism selenium deficiency Trigonella foenum-graecum Mimosine: growth glutathione metabolism Mitochondria: of Trigonella foenum- graecum influence ofmimosine selenium status 

References

  1. 1.
    E. Cadenas, Biochemistry of oxygen toxicity,Annu. Rev. Biochem. 58, 79–110 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    H. Sies, Strategies of antioxidant defense,Eur. J. Biochem. 215, 213–219 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Sies, Oxidative stress: oxidants and antioxidants,Exp. Physiol. 82, 291–295 (1997).PubMedGoogle Scholar
  4. 4.
    J. A. Hernandez, F. J. Corpas, M. Gomez, L. A. del Rio, and F. Sevilla, Salt induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria,Phys-iol. Planta 89, 103–110 (1993).CrossRefGoogle Scholar
  5. 5.
    A. H. Price, N. M. Atherton, and G. A. F. Hendry, Plants under drought-stress gen-erate activated oxygen,Free Radical Res. Commun. 8, 61–66 (1989).CrossRefGoogle Scholar
  6. 6.
    N. Schmitt and P. Dizengremel, Effect of osmotic stress on mitochondria isolated from mung bean and soybean seedlings,Plant Physiol. Biochem. 27, 17–26 (1989).Google Scholar
  7. 7.
    A. Meister and M. E. Anderson, Glutathione,Annu. Rev. Biochem. 52, 711–760 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    W. Wang and N. Ballatori, Endogenous glutathione conjugates: occurrence and bio-logical functions,Pharmacol. Rev. 50, 335–356 (1998).PubMedGoogle Scholar
  9. 9.
    R. W. Scholz, L. A. Minicucci, and C. C. Reddy, Effects of vitamin E and selenium on antioxidant defense in rat heart,Biochem. Mol. Biol. Int. 42, 997–1006 (1997).PubMedGoogle Scholar
  10. 10.
    T. Nakane, K. Asayama, K. Kodera, H. Hayashibe, N. Uchida, and S. Nakazawa, Effect of selenium deficiency on cellular and extra cellular glutathione peroxidases: immunochemical detection and mRNA analysis in rat kidney and serum,Free Radi-cal Biol. Med. 25, 504–511 (1998).CrossRefGoogle Scholar
  11. 11.
    O. Epp, R. Ladenstein, and A. Wendel, The refined structure of selenoenzyme glu-tathione peroxidase at 0.2 nm resolution,Eur. J. Biochem. 133, 51–69 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    H. S. Marinho, F. Antunes, and R. E. Pinto, Role of glutathione peroxidase and phos-pholipid hydroperoxide glutathione peroxidase in the reduction of lysophospholipid hydroperoxides,Free Radical Biol. Med. 22, 871–873 (1997).CrossRefGoogle Scholar
  13. 13.
    V. Narayanaswamy, P. Padma Bai, Mary Babu, and K. Lalitha, Selenium mediated biochemical changes in Japanese quails-Formulation of semi-purified low selenium diet and effect on glutathione peroxidase,Biol. Trace Element Res. 10, 79–89 (1986).Google Scholar
  14. 14.
    P. Rani and K. Lalitha, Evidence for altered structure and impaired mitochondrial electron transport function in selenium deficiency,Biol. Trace Element Res. 51, 225–234 (1996).CrossRefGoogle Scholar
  15. 15.
    A. Matsuda, M. Kimura, and Y. Itokawa, Influence of selenium deficiency on vitamin deficiency on vital functions in rats,Biol. Trace Element Res. 61, 287–301 (1998).CrossRefGoogle Scholar
  16. 16.
    K. Easwari and K. Lalitha, Subcellular distribution of75selenium during uptake and its influence on mitochondrial oxidation in germinatingVigna radiata, Biol. Trace Ele-ment Res. 48, 141–160 (1995).CrossRefGoogle Scholar
  17. 17.
    O. H. Lowry, N. J. Rosenbrough, J. L. Farr, and R. J. Randall, Protein measurement with folin phenol reagent,J. Biol. Chem. 193, 265–268 (1951).PubMedGoogle Scholar
  18. 18.
    G. L. Ellman, Tissue sulfhydryl groups,Arch. Biochem. Biophys. 82, 70–77 (1959).PubMedCrossRefGoogle Scholar
  19. 19.
    R. A. Lawrence and R. F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver,Biochem. Biophys. Res. Commun. 71, 952–958 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    E. Racker, Glutathione reductase from baker’s yeast and beef liver,J. Biol. Chem. 217, 855–865 (1955).PubMedGoogle Scholar
  21. 21.
    W. H. Habig, M. J. Pabst, and W. B. Jakoby, Glutathione S-transferases. The first enzy-matic step in mercapturic acid formation,J. Biol. Chem. 249, 7130–7139 (1974).PubMedGoogle Scholar
  22. 22.
    C. J. Bixler and W. C. Dauterman, Studies on γ-glutamyl transferase in the housefly,Insect Biochem. 11, 463–466 (1981).CrossRefGoogle Scholar
  23. 23.
    S. Puntarulo, M. Galleano, R. A. Sanchez, and A. Boveris, Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination,Biochem. Biophys. Acta 1074, 277–283 (1991).PubMedGoogle Scholar
  24. 24.
    N. Depege, J. Drevet, and N. Boyer, Molecular cloning and characterization of tomato cDNA s encoding glutathione peroxidase-like proteins,Eur. J. Biochem. 253, 445–151 (1998).PubMedCrossRefGoogle Scholar
  25. 25.
    F. Ursini, M. Maiorino, and A. Rovei, Phospholipid hydroperoxide glutathione per-oxidase: more than an antioxidant enzyme?Biomed. Environ. Sci. 10, 327–332 (1997).PubMedGoogle Scholar
  26. 26.
    M. Sugimoto, S. Furui, and Y. Suzuki, Molecular cloning and characterization of cDNA encoding putative phospholipid hydroperoxide glutathione peroxidase from spinach,Biosci. Biotechnol. Biochem. 8, 1379–1381 (1997).CrossRefGoogle Scholar
  27. 27.
    M. Sugimoto and W. Sakamoto, Putative phospholipid hydroperoxide glutathione peroxidase gene fromArabidopsis thaliana induced by oxidative stress,Genes Genet. Syst. 72, 311–316 (1997).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Beeor-Tzahar, G. Ben-Hayyim, D. Holland, Z. Falhin, and Y. Eshdat, A stress associated citrus protein is a distinct plant phospholipid hydroperoxide gluta-thione peroxidase,FEBS Lett. 366, 151–155 (1995).PubMedCrossRefGoogle Scholar
  29. 29.
    V. P. Roxas, R. K. Smith, Jr., E. R. Allen, and R. D. Allen, Overexpression of GST/GSH-Px enhances the growth of transgenic tobacco seedlings during stress,Nat. Biotechnol. 15, 988–991, (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    H. Lee, J. Jo, and D. Son, Molecular cloning and characterization of the gene encoding glutathione reductase inBrassica campestris, Biochim. Biophys. Acta 1395, 309–314 (1998).Google Scholar
  31. 31.
    D. O’Kane, V. Gill, P. Boyd, and R. Burdon, Chilling, oxidative stress and antioxidant responses inArabidopsis thaliana callus,Planta 198, 371–377 (1996).PubMedCrossRefGoogle Scholar
  32. 32.
    G. Wingsle and S. Karpinski, Differential redox regulation by glutathione reductase and Cu-Zn Superoxide dismutase gene expression inPinus sylvestris L. needles,Planta 198, 151–157 (1996).PubMedCrossRefGoogle Scholar
  33. 33.
    R. G. Stevens, G. P. Creissen, and P. M. Mullineaux, Cloning and characterization of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expres-sion in response to stress,Plant Mol. Biol. 35, 641–654 (1997).PubMedCrossRefGoogle Scholar
  34. 34.
    K. Tanaka, M. Aono, H. Saji, and A. Kubo, Stress tolerance of transgenicNicotiana tabacum with enhanced activities of glutathione reductase and Superoxide dismutase,Biochem. Soc. Trans. 24, 200S (1996).PubMedGoogle Scholar
  35. 35.
    P. Mullineaux, C. Enard, R. Hellens, and G. Creissen, Characterization of glu-tathione reductase gene and its genetic locus from pea (Pisum sativum L.),Planta 200, 186–194 (1996).PubMedCrossRefGoogle Scholar
  36. 36.
    K. A. Marrs, The function and regulation of glutathione S-transferases in plants,Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 127–158 (1996).PubMedCrossRefGoogle Scholar
  37. 37.
    M. Skipsey, C. J. Andrews, J. K. Townson, I. Jepson, and R. Edwards, Substrate and thiol specificity of a stress-inducible glutathione transferase from soybean, FEBSLett. 409, 370–374 (1997).PubMedCrossRefGoogle Scholar
  38. 38.
    R. Tenhaken, A. Levine, L. F. Brisson, R. A. Dixon, and C. Lamb, Function of the oxidative burst in hypersensitive disease resistance,Proc. Natl. Acad. Sci. USA 92, 4158–1163 (1995).PubMedCrossRefGoogle Scholar
  39. 39.
    J. W. Gronwald and K. L. Plaisance, Isolation and characterization of glutathione S-transferase isozymes from sorghum,Plant Physiol. 117, 877–892 (1998).PubMedCrossRefGoogle Scholar
  40. 40.
    D. P. Dixon, D. J. Cole, and R. Edwards, Purification, regulation and cloning of glu-tathione transferase (GST) from maize resembling the auxin inducible type III GSTs,Plant Mol. Biol. 36, 75–87 (1998).PubMedCrossRefGoogle Scholar
  41. 41.
    D. E. Reichers, G. P. Irzyk, S. S. Jones, and E. P. Fuerst, Partial characterization of glu-tathione S-transferase from wheat (Triticum sp.) and purification of safener-induced glutathione S-transferase fromTriticum tauschii, Plant Physiol.114, 1461–1470 (1997).CrossRefGoogle Scholar
  42. 42.
    P. Reinmer, L. Prade, P. Hof, T. Neuefeind, R. Huber, R. Zettl, et al., Three-dimension-al structure of glutathione S-transferase fromArabidopsis thaliana at 2.2 å resolution: structural characterization of herbicide-conjugating plant glutathione S-transferase and a novel active site architecture,J. Mol. Biol. 255, 289–309 (1996).CrossRefGoogle Scholar
  43. 43.
    P. G. Board, R. T. Baker, G. Chelvanayagam, and L. S. Jermiin, Zeta, a novel class of glutathione transferases in a range of species from plants to humans,Biochem. J. 328, 929–935 (1997).PubMedGoogle Scholar
  44. 44.
    N. Tanyguchi and Y. Ikeda, γ-Glutamyl transpeptidases: catalytic mechanism and gene expression,Adv. Enzymol. Relat. Areas Mol. Biol. 72, 239–278 (1998).CrossRefGoogle Scholar
  45. 45.
    M. H. Hanigan, γ-Glutamyl transpeptidase, a glutathionase: its expression and func-tion in carcinogenesis,Chem Biol. Interact. 111, 333–342 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • T. R. Santosh
    • 1
  • M. Sreekala
    • 1
  • K. Lalitha
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyMadras, ChennaiIndia

Personalised recommendations