Applied Biochemistry and Biotechnology

, Volume 10, Issue 1–3, pp 301–307 | Cite as

Excitable artificial cells of proteinoid

  • Aleksander T. Przybylski
  • Sidney W. Fox


The proteinoid cells are assembled of thermal polymers of amino acids. Typically, an appropriate mixture of amino acids containing aspartic or glutamic acid is heated at 190°C for 6 h, stirred with water for 2 h, dialyzed during 2 d, and lyophilized. Spheroidal cells are made from such polymer by dissolving it in the water by boiling, and then cooling. Many of them can be made by sonication at room temperature.

These artificial cells, ranging from microns to tens of microns in diameter (depending on composition and preparation), have double membranes and various internal compositions. The spherules can microencapsulate dyes, oxidant-reductant compounds or acceptor-donor substances, and can be packed together.

Such spherules display electrical polarization and electrical discharges and respond to intra- and extracellular ionic and electric influence upon membrane and action potential. These properties arise from the double membrane structure, asymmetric membrane permeability, and channeling phenomena.

Such features as exponential dependence of the steady-state conductance and capacitance as well as negative resistance of the membrane seem to be responsible for the flip-flop alternations of the membrane polarization, rhythmic electric oscillations, and all-or-none action potentials.

The presence of such chromophores as pteridine and flavin in polymers constituting these cells is responsible for their photosensitivity.

Index Entries

Artificial cell, of proteinoids proteinoid cells excitable cells, of proteinoid encapsulation proteins, thermal encapsulation of thermal polymers, of amino acids polymers of amino acids, thermal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fox, S. W., and Dose, K. (1977),Molecular Evolution and the Origin of Life, rev. ed., Dekker, New York.Google Scholar
  2. 2.
    Fox, S. W. (1976),Origins of Life 7, 49.CrossRefGoogle Scholar
  3. 3.
    Brooke, S., and Fox, S. W. (1977),BioSystems 9, 1.CrossRefGoogle Scholar
  4. 4.
    Fox, S. W., and Brooke, S. (1979), inMicroencapsulation, Kondo, T., ed., Techno Books, Tokyo.Google Scholar
  5. 5.
    Fox, S. W. (1965),The Origins of Prebiological Systems and of Their Molecular Matrices, Academic Press, New York, pp. 361–382.Google Scholar
  6. 6.
    Vegotsky, A. (1972), inMolecular Evolution, Rohlfing, D. L., and Oparin, A. I., eds., Plenum Press, New York.Google Scholar
  7. 7.
    Ishima, Y., Przybylski, A. T., and Fox, S. W. (1981),BioSystems 13, 243.CrossRefGoogle Scholar
  8. 8.
    Przybylski, A. T., Stratten, W. P., Syren, R. M., and Fox, S. W. (1982),Naturwissenschaften 69, 561.CrossRefGoogle Scholar
  9. 9.
    Przybylski, A. T., and Fox, S. W. (1982), inAlternative Energy Sources IV, Vol. 3, Veziroglu, T. N., ed., Ann Arbor Science Press, Ann Arbor, pp. 95–102.Google Scholar
  10. 10.
    Tasaki, I., and Warashina, A. (1976),Photochem. Photobiol. 24, 191.Google Scholar
  11. 11.
    Jay, A. W. L., and Burton, A. C. (1969),Biophys. J. 9, 115.CrossRefGoogle Scholar
  12. 12.
    Kondo, T., Arakawa, M., and Tamamushi, B. (1974), in Microencapsulation, Nixon, J. R., ed., Dekker, New York, pp. 163–172.Google Scholar
  13. 13.
    Kondo, A., and van Valkenburg, J. W. (1979),Microcapsule Processing and Technology, Dekker, New York, pp. 106–120.Google Scholar
  14. 14.
    Chang, T. M. S. (1974), inMicroencapsulation, Vandegaer, J. E., ed., Plenum, New York, pp. 95–102.Google Scholar
  15. 15.
    Chang, T. M. S. (1979), inMicroencapsulation, Kondo, T., ed., Techno Books, Tokyo, pp. 369–375.Google Scholar

Copyright information

© Humana Press Inc. 1984

Authors and Affiliations

  • Aleksander T. Przybylski
    • 1
  • Sidney W. Fox
    • 1
  1. 1.NFCR Laboratory of the Institute for Molecular and Cellular EvolutionUniversity of MiamiCoral GablesUSA

Personalised recommendations