Biological Trace Element Research

, Volume 59, Issue 1–3, pp 133–143

Alterations in lipid composition and neuronal injury in primates following chronic aluminium exposure

  • Sanjay Sarin
  • Vandana Gupta
  • Kiran Dip Gill
Original Articles

Abstract

The effect of chronic aluminium exposure (25 mg/kg b.wt.) was studied on the lipid composition and various membrane-bound enzymes in different regions of monkey brain. Aluminium (Al) administration caused a significant decrease in the total lipid, glycolipid, and phospholipid content of primate brain. Cholesterol levels and the phospholipid to cholesterol ratio were, however, markedly increased as a consequence of Al administration, thereby indicating a loss of membrane integrity. This was further confirmed when Al treatment was found to have a significant effect on the various membrane-bound enzymes in terms of decreased activities of Na+ K+ ATPase and acetylcholinesterase along with a decrease in the activity of the myelin-specific enzyme, 2′ 3′-cyclic nucleotide phosphohydrolase.

Index Entries

Aluminium brain lipids membrane monkey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Julka, R. Sandhir, and K. D. Gill, Altered cholinergic metabolism in rat CNS following aluminium exposure: implications on learning performance,J. Neuwchem. 65, 2157–2167 (1995).CrossRefGoogle Scholar
  2. 2.
    S. S. Krishnan, D. R. Mclachlan, A. J. Dalton, B. Krishnan, S. A. Stanley, J. E. Harrison, and T. Kruck, Aluminium toxicity in humans, inEssential and Toxic Trace Elements in Health and Disease. Alan R. Liss, pp. 645–659 (1988).Google Scholar
  3. 3.
    J. M. Candy, A. E. Dakley, and J. Klinowski, Alumino-Silicates and senile plaque formation in Alzheimer’s disease,Lancet ii, 354–357 (1986).CrossRefGoogle Scholar
  4. 4.
    A. Bizzi and P. Gambetti, Phosphorylation of neurofilaments is altered in aluminium intoxication,Acta Neuropathol. 71, 154–158 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    T. B. Shea, J. E. Clarke, T. R. Wheelock, P. A. Paskevich, and R. A. Nixon, Aluminium salts induce the accumulation of neurofilaments in perikarya of NB2a/dl neuroblastoma,Brain Res. 492, 53–64 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    A. C. Alfrey, G. R. Le Gendre, and W. D. Kachny, The dialysis encephalopathy syndrome: possible aluminium intoxication,N. Eng. J. Med. 294, 184–188.Google Scholar
  7. 7.
    R. M. Strong, R. M. Garruto, J. G. Joshi, W. R. Mundy, and T. J. Shafer, Can the mechanism of aluminium neurotoxicity be integrated into a unified scheme?J. Toxicol. Environ. Health 48, 599–614 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    C. G. Fraga, P. I. Oteiza, M. S. Golub, M. E. Gershwin, and C. L. Keen, Effects of aluminium on brain lipid peroxidation,Toxicol. Lett. 51, 213–219 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    H. Zumkley, H. P. Bertram, A. Lison, O. Knoll, and H. Loose, Al, Zn and Cu concentrations in plasma chronic renal insufficiency,Clin. Nephrol. 12, 18–21 (1979).PubMedGoogle Scholar
  10. 10.
    J. Folch, M. Lees, and G. H. S. Stanley, A simple method for the isolation and purification of total lipid from animal tissues,J. Biol. Chem. 226, 497–509 (1957).PubMedGoogle Scholar
  11. 11.
    E. Levin and C. Head, Quantitative analysis of tissue neutral lipids,Anal. Biochem. 10, 23–31 (1965).PubMedCrossRefGoogle Scholar
  12. 12.
    G. R. Bartlett, Phosphorus assay in column chromatography,J. Biol. Chem. 234, 466–468 (1959).PubMedGoogle Scholar
  13. 13.
    M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebbers, and F. Smith, Colorimetric method for determination of sugars and related substances.Anal. Chem. 28, 350–356 (1956).CrossRefGoogle Scholar
  14. 14.
    A. Zlatkis, B. Zak, and A. J. Boyle, A new method for the direct determination of cholesterol,J. Lab. Clin. Med. 41, 486–492 (1953).PubMedGoogle Scholar
  15. 15.
    L. Warren, The thiobarbituric acid assay of sialic acids,J. Biol. Chem. 234, 1971–1975 (1959).PubMedGoogle Scholar
  16. 16.
    E. D. Wills, Mechanisms of lipid peroxide formation in animal tissues,Biochem. J. 99, 667–676 (1966).PubMedGoogle Scholar
  17. 17.
    P. D. Swanson, H. F. Bradford, and H. Mcllwain, Stimulation and stabilization of the sodium ion activated adenosine triphosphate of cerebral microsomes by surface active, especially polyoxyethylene ethers: actions of phospholipases and neuraminidase,Biochem. J. 92, 235–247 (1964).PubMedGoogle Scholar
  18. 18.
    J. B. Martin and D. M. Dotty, Determination of inorganic phosphate: modification of isobutyl alcohol procedures,Anal. Chem. 21, 965–968, (1949).CrossRefGoogle Scholar
  19. 19.
    G. L. Ellman, K. D. Courtney, V., Jr. Anders, and R. M. Featherstone, A new and repid colorimetric determination of acetylcholinesterase activity,Biochem. Pharmacol. 7, 88–95 (1961).PubMedCrossRefGoogle Scholar
  20. 20.
    J. R. Prohaska, D. A. Clark, and W. W. Wells, Improved rapidity and precision in the determination of Brain 2′,3′cyclic nucleotide 3′phosphohydrolase,Anal. Biochem. 56, 275–282 (1973).PubMedCrossRefGoogle Scholar
  21. 21.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, (1951) Protein measurement with Folin-Phenol reagent,J. Biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar
  22. 22.
    F. Islam, K. Tayabba, and M. Hasan, Organophosphate metasystox induced increment of lipase activity and lipid peroxidation in cerebral hemispheres: diminution of lipids in discrete areas of rat brain,Acta Phramacol. Toxicol. 53, 121–124 (1983).Google Scholar
  23. 23.
    J. P. Kehrer, Free radicals as mediators of tissue injury and disease,Crit. Rev. Toxicol. 23, 21–48 (1993).PubMedCrossRefGoogle Scholar
  24. 24.
    D. Julka and K. D. Gill, Altered calcium homeostasis: possible mechanism of aluminium induced neurotoxicity,Biochim. Biophys. Acta 1315, 47–54 (1996).PubMedGoogle Scholar
  25. 25.
    M. L. Koenig and R. S. Jope, Aluminium inhibits fast phase of voltage-dependent calcium influx into synaptosomes,J. Neurochem. 49, 316–320 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Sarin, D. Julka, and K. D. Gill, Regional alterations in calcium homeostasis in the primate brain following chronic aluminium exposure,Mol Cell. Biochem. 168, 95–100 (1997).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Deleers, Cationic atmosphere and cation competition binding at negatively charged membranes: pathological implications of aluminium,Res. Commun. Chem. Pathol. Pharmacol. 49, 277–294 (1985).PubMedGoogle Scholar
  28. 28.
    M. Deleers, J. P. Servais, and E. Wulfert, Neurotoxic cations induce membrane rigidification and membrane fusion at micromolar concentrations,Biochem. Biophys. Acta 855, 271–276 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Cochran, D. C. Elliott, P. Brennan, and V. Chawtur, Inhibition of protein kinase C activation by low concentration of aluminium,Clin. Chim. Acta 194, 167–172 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    P. E. Godiei and F. R. Landesberger,13C nuclear magnetic resonance study of the dynamic structure of lecithin: cholesterol membranes and the position of stearic acid spin labels,Biochemistry 14, 3927–3933 (1975).CrossRefGoogle Scholar
  31. 31.
    S. Ando, Gangliosides in the nervous system,Int. Rev. Neurochem. 5, 507–537 (1983).CrossRefGoogle Scholar
  32. 32.
    I. Kracun, H. Rosner, C. Cosovic, and A. Savlgenic, Topographical atlas of the ganliosides of the adult human brain,J. Neurochem. 43, 979–989 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Rahman, Functional indication of gangliosides in uraemic rats treated with 24R, 25-Dihydroxy vitamin D3,Neuropathol. Appl. Neurobiol. 15, 55–62 (1983).Google Scholar
  34. 34.
    G. J. Quinlan, B. Halliwell, C. P. Moorhouse, and J. M. C. Gutteridge, Action of lead (II) and aluminium (III) ions on iron stimulated lipid peroxidation in liposomes, erythrocytes and rat liver microsomal fraction,Biochim. Biophys. Acta 962, 196–200 (1988).PubMedGoogle Scholar
  35. 35.
    P. Oteiza, Aluminium has both oxidant and antioxidant effects in mouse brain membranes,Arch. Biochem. Biophys. 300, 517–521 (1993).PubMedCrossRefGoogle Scholar
  36. 36.
    P. Ott, Membrane acetylcholinesterase: purification, molecular properties and interactions with amphiphilic environments,Biochim. Biophys. Acta. 822, 375–392 (1985).PubMedGoogle Scholar
  37. 37.
    J. C. K. Lai, J. F. Guest, T. K. C. Leung, L. Lim, and A. N. Davison, The effect of cadmium, manganese and aluminium on Na+ K+ activated and magnesium activated adenosine triphosphatase activity and choline uptake in rat brain synaptosomes,Biochem. Pharmacol. 29, 141–146 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    B. Roelofson, The specificity in the lipid requirement of calcium and (sodium plus potassium) transporting adenosine triphosphatase,Life Sci. 29, 2235–2247 (1981).CrossRefGoogle Scholar
  39. 39.
    A. G. Garcia, and S. M. Kirpekar, Inhibition of Na+K+ATPase and release of neurotransmitters,Nature 257, 722 (1975).PubMedCrossRefGoogle Scholar
  40. 40.
    G. L. Schimdt, Development of biochemical activities associated with myelination in chick brain reaggregate cultures,Brain Res. 87, 110–113 (1975).CrossRefGoogle Scholar
  41. 41.
    K. A. Funk, C. H. Liu, B. W. Wilson, and R. J. Higgings, Avian embryonic brain reaggregate culture system, I: characterization for organophosphorus compound toxicity studies,Toxicol. Appl. Pharmacol. 124, 149–158 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Sanjay Sarin
    • 1
  • Vandana Gupta
    • 1
  • Kiran Dip Gill
    • 1
  1. 1.Department of BiochemistryPostgraduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations