Israel Journal of Mathematics

, Volume 90, Issue 1–3, pp 235–252 | Cite as

Effective analysis of integral points on algebraic curves

  • Yuri Bilu


LetK be an algebraic number field,SS \t8 a finite set of valuations andC a non-singular algebraic curve overK. LetxK(C) be non-constant. A pointPC(K) isS-integral if it is not a pole ofx and |x(P)| v >1 impliesvS. It is proved that allS-integral points can be effectively determined if the pair (C, x) satisfies certain conditions. In particular, this is the case if
  1. (i)

    x:CP1 is a Galois covering andg(C)≥1;

  2. (ii)

    the integral closure of\(\bar Q\)[x] in\(\bar Q\)(C) has at least two units multiplicatively independent mod\(\bar Q\)*.


This generalizes famous results of A. Baker and other authors on the effective solution of Diophantine equations.


Integral Point Algebraic Curf Diophantine Equation Galois Covering Algebraic Number Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ba1]
    A. Baker,Linear forms in the logarithms of algebraic numbers I, Mathematica13 (1966), 204–216; II, ibid.14 (1967), 102–107; III, ibid.14 (1967); 220–224; IV, ibid.15 (1968), 204–216.Google Scholar
  2. [Ba2]
    A. Baker,Contributions to the theory of Diophantine equations. I, II, Philosophical Transactions of the Royal Society of London263 (1967–68), 173–208.CrossRefGoogle Scholar
  3. [Ba3]
    A. Baker,The Diophantine equation y 2=ax 3+bx 2+cx+d, Journal of the London Mathematical Society43 (1968), 1–9.zbMATHCrossRefGoogle Scholar
  4. [Ba4]
    A. Baker,Bounds for the solutions of the hyperelliptic equations, Proceedings of the Cambridge Philosophical Society65 (1969), 439–444.zbMATHGoogle Scholar
  5. [BaC]
    A. Baker and J. Coates,Integer points on curves of genus 1, Proceedings of the Cambridge Philosophical Society67 (1970), 592–602.MathSciNetGoogle Scholar
  6. [BaW]
    A. Baker and G. Wüstholz,Logarithmic forms and Group Varieties, Journal für die Reine und Angewandte Mathematik442 (1993), 19–62.zbMATHCrossRefGoogle Scholar
  7. [Be]
    F. Beukers,Ternary form equations, preprint No. 771, University of Utrecht, 1993.Google Scholar
  8. [Bi1]
    Yu. Bilu (Belotserkovski),Effective analysis of a class of Diophantine equations (Russian), Vestsi Akademii Navuk BSSR, Ser. Fiz.-Math. Navuk3 (1988), 111–115.MathSciNetGoogle Scholar
  9. [Bi2]
    Yu. Bilu (Belotserkovski),Effective analysis of a new class of Diophantine equations (Russian), Vestsi Akad. Navuk BSSR, Ser. Fiz.-Math. Navuk6 (1988), 34–39, 125.MathSciNetGoogle Scholar
  10. [Bi3]
    Yu. Bilu,Effective analysis of integral points on algebraic curves, Thesis, Beer Sheva, 1993.Google Scholar
  11. [C]
    J. Coates,Construction of rational functions on a curve, Proceedings of the Cambridge Philosophical Society68 (1970), 105–123.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [Ch]
    W. L. Chow,The Jacobian variety of an algebraic curve, American Journal of Mathematics76 (1954), 453–476.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [Che]
    N. G. Chebotarev,The Theory of of Algebraic Functions (Russian), Moscow-Leningrad, 1948.Google Scholar
  14. [F]
    G. Faltings,Eindlichkeitssätze für abelche Varietäten über Zahlkörpern, Inventiones Mathematicae3 (1983), 349–366; Erratum:75 (1984), p. 381.CrossRefMathSciNetGoogle Scholar
  15. [G]
    A. O. Gelfond,Transcendent and Algebraic Numbers, (Russian), Moscow 1952; English transl.: New York, Dover, 1960.Google Scholar
  16. [I]
    Y. Ihara, a letter to the author from 28.09.92.Google Scholar
  17. [K]
    H. Kleiman,On the Diophantine equation f(x, y)=0, Journal für die Reine und Angewandte Mathematik286/287 (1976), 124–131.MathSciNetGoogle Scholar
  18. [KIL]
    S. L. Kleiman and D. Laksov,Another proof of the existence of special divisors, Acta Mathematica132 (1974), 163–176.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [KL]
    D. Kubert and S. Lang,Modular Units, Springer, Berlin, 1981.zbMATHGoogle Scholar
  20. [KT]
    S. V. Kotov and L. A. Trellina,S-ganze Punkte auf elliptischen Kurven, Journal für die Reine und Angewandte Mathematik306 (1979), 28–41.zbMATHGoogle Scholar
  21. [L1]
    S. Lang,Fundamentals of Diophantine Geometry, Springer, Berlin, 1983.zbMATHGoogle Scholar
  22. [L2]
    S. Lang,Elliptic Curves: Diophantine Analysis, Springer, Berlin, 1978.zbMATHGoogle Scholar
  23. [L3]
    S. Lang,Introduction to Modular Forms, Springer, Berlin, 1977.Google Scholar
  24. [L4]
    S. Lang,Elliptic Functions, Addison-Wesley, 1973.Google Scholar
  25. [M]
    D. W. Masser,Linear relations on algebraic groups, inNew Advances in Transcendence Theory, Cambridge Univ. Press, 1988, pp. 248–263.Google Scholar
  26. [O]
    A. P. Ogg,Modular Forms and Dirichlet Series, Benjamin, 1969.Google Scholar
  27. [Po]
    D. Poulakis,Points entiers sur les courbes de genre 0, Colloquium Mathematicum66 (1983), 1–7.MathSciNetGoogle Scholar
  28. [PW]
    P. Philippon and M. Waldschmidt,Lower bounds for linear forms in logarithms, inNew Advances in Transcendence Theory, Cambridge Univ. Press, 1988, pp. 280–312.Google Scholar
  29. [S]
    C. L. Siegel,Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss Akad. Wiss. Phys.-Math. Kl., 1929, Nr. 1.Google Scholar
  30. [Sc1]
    W. M. Schmidt,Construction and Estimation of Bases in Function Fields, Journal of Number Theory39 (1991), 181–224.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [Sc2]
    W. M. Schmidt,Integer points on curves of genus 1, Compositio Mathematica81 (1992), 33–59.zbMATHMathSciNetGoogle Scholar
  32. [Sh]
    G. Shimura,Introduction to the Arithmetic Theory of Automorphic Function, Iwanami Shoten and Princeton Univ. Press, 1971.Google Scholar
  33. [ShT]
    T. N. Shorey and R. Tijdeman,Exponential Diophantine equations, Cambridge Univ. Press, Cambridge, 1986.zbMATHGoogle Scholar
  34. [Sp]
    V. G. Sprindžuk,Classical Diophantine Equations in Two Unknowns (Russian), Nauka, Moscow, 1982; English transl.: Lecture Notes in Math.1559, Springer, Berlin, 1994.Google Scholar
  35. [V]
    P. Vojta,Diophantine Approximation and Value Distribution Theory, Lecture Notes in Math.1239, Springer, Berlin, 1987.Google Scholar
  36. [Wü]
    G. Wüstholz,A new approach to Baker’s theorem on linear forms in logarithms III, inNew Advances in Transcendence Theory, Cambridge Univ. Press, 1988, pp. 399–410.Google Scholar
  37. [Yu]
    Kunrui Yu,Linear forms in p-adic logarithms II, Compositio Mathematica74 (1990), 15–113.MathSciNetGoogle Scholar

Copyright information

© Hebrew University 1995

Authors and Affiliations

  • Yuri Bilu
    • 1
    • 2
  1. 1.Department of Mathematics and Computer ScienceBen-Gurion UniversityBeer ShevaIsrael
  2. 2.Mathématiques StochastiquesUniversité Bordeaux 2Bordeaux CedexFrance

Personalised recommendations