Biological Trace Element Research

, Volume 66, Issue 1–3, pp 319–330 | Cite as

The justification for providing dietary guidance for the nutritional intake of boron

  • Forrest H. Nielsen


Because a biochemical function has not been defined for boron (B), its nutritional essentiality has not been firmly established. Nonetheless, dietary guidance should be formulated for B, because it has demonstrated beneficial, if not essential, effects in both animals and humans. Intakes of B commonly found with diets abundant in fruits, vegetables, legumes, pulses, and nuts have effects construed to be beneficial in macromineral, energy, nitrogen, and reactive oxygen metabolism, in addition to enhancing the response to estrogen therapy and improving psychomotor skills and cognitive processes of attention and memory. Perhaps the best-documented beneficial effect of B is on calcium (Ca) metabolism or utilization, and thus, bone calcification and maintenance. The paradigm emerging for the provision of dietary guidance that includes consideration of the total health effects of a nutrient, not just the prevention of a deficiency disease, has resulted in dietary guidance for chromium (Cr) and fluoride; both of these elements have beneficial effects in humans, but neither has a defined biochemical function. Knowledge of B nutritional effects in humans equals or is superior to that of Cr and fluoride; thus, establishing a dietary reference intake for B is justified. An analysis of both human and animal data suggests that an acceptable safe range of population mean intakes of B for adults could well be 1–13 mg/d. Recent findings indicate that a significant number of people do not consistently consume more than 1 mg B/d; this suggests that B could be a practical nutritional or clinical concern.

Index entries

Boron calcium bone dietary reference intakes human nutrition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. A. Schroeder, J. J. Balassa, and I. H. Tipton, Abnormal trace metals in man—nickel,J. Chron. Dis. 15, 51–65 (1961).CrossRefGoogle Scholar
  2. 2.
    G. C. Cotzias, Importance of trace substances in environmental health as exemplified by manganese,Trace Sub. Environ. Health 1, 5–19 (1967).Google Scholar
  3. 3.
    E. J. Underwood, Introduction, inTrace Elements in Human and Animal Nutrition, 3rd ed., E. J. Underwood, ed., Academic, New York, pp. 1–13 (1971).Google Scholar
  4. 4.
    W. Mertz, Some aspects of nutritional trace element research,Fed. Proc. 29, 1482–1488 (1970).PubMedGoogle Scholar
  5. 5.
    F. H. Nielsen, Essentiality and function of nickel, inTrace Element Metabolism in Animals-2, W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds., University Park Press, Baltimore, MD, pp. 381–395 (1974).Google Scholar
  6. 6.
    F. H. Nielsen, How should dietary guidance be given for mineral elements with beneficial actions or suspected of being essential?J. Nutr. 126, 2377S-2385S (1996).PubMedGoogle Scholar
  7. 7.
    Food and Nutrition Board,Recommended Dietary Allowances, 10th ed., National Academy Press, Washington, DC (1989).Google Scholar
  8. 8.
    K. R. Phipps, Fluoride, inPresent Knowledge in Nutrition, 7th ed., E. E. Ziegler and L. J. Filer, Jr., eds., ILSI Press, Washington, DC, pp. 329–333 (1996).Google Scholar
  9. 9.
    Food and Nutrition Board,Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride, National Academy Press, Washington, DC (1997).Google Scholar
  10. 10.
    R. A. Anderson, Recent advances in the clinical and biochemical effects of chromium deficiency, inEssential and Toxic Trace Elements in Human Health and Disease: An Update, A. S. Prasad, ed., Wiley-Liss, New York, pp. 221–234 (1993).Google Scholar
  11. 11.
    W. Mertz, Chromium in human nutrition: A review,J. Nutr. 123, 626–635 (1993).PubMedGoogle Scholar
  12. 12.
    R. A. Anderson, N. Cheng, N. A. Bryden, M. M. Polansky, N. Cheng, J. Chi, et al., Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes,Diabetes 46, 1786–1791 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    W. Mertz, Essential trace metals: new definitions based on new paradigms,Nutr. Rev. 51, 287–295 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Jägerstad, Calcium in nutrition, inThe Role of Calcium in Biological Systems, Vol. III, L. J. Anghileri and A. M. Tuffet-Anghileri, eds., CRC, Boca Raton, FL, pp. 45–54 (1982).Google Scholar
  15. 15.
    L. C. Clark, G. F Combs, B. W. Turnbull, E. H. Slate, D. K. Chalker, J. Chow, et al., Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin,JAMA 276, 1957–1963 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    F. H. Nielsen, Boron in human and animal nutrition,Plant and Soil 193, 199–208 (1997).CrossRefGoogle Scholar
  17. 17.
    J. G. Penland, Dietary boron, brain function, and cognitive performance,Environ. Health Perspectives 102 (Suppl. 7), 65–72 (1994).Google Scholar
  18. 18.
    C. D. Hunt, The biochemical effects of physiologic amounts of dietary boron in animal nutrition models,Environ. Health Perspectives 102 (Suppl. 7), 35–43 (1994).Google Scholar
  19. 19.
    C. D. Hunt and F. H. Nielsen, Interaction between boron and cholecalciferal in the chick, inTrace Element Metabolism in Man and Animals (TEMA-4), J. McC. Howell, J. M. Gawthorne, and C. L. White, eds., Australian Academy of Science, Canberra, Australia, pp. 597–600 (1981).CrossRefGoogle Scholar
  20. 20.
    C. D. Hunt, Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick,Biol. Trace Element Res. 22, 201–220 (1989).CrossRefGoogle Scholar
  21. 21.
    C. D. Hunt, J. L. Herbel, and J. P. Idso, Dietary boron modifies the effects of vitamin D3 nutrition on indices of energy substrate utilization and mineral metabolism in the chick,J. Bone Miner. Res. 9, 171–182 (1994).PubMedCrossRefGoogle Scholar
  22. 22.
    N. King, T. W. Odom, H. W. Sampson, and A. G. Yersin, The effect ofin vivo boron supplementation on bone mineralization of the vitamin D—deficient chicken embryo,Biol. Trace Element Res. 31, 223–233 (1991).CrossRefGoogle Scholar
  23. 23.
    M. Hegsted, M. J. Keenan, F. Siver, and P. Wozniak, Effect of boron on vitamin D deficient rats,Biol. Trace Element Res. 26, 243–255 (1991).CrossRefGoogle Scholar
  24. 24.
    Y. Bai and C. D. Hunt, Dietary boron enhances efficacy of cholecalciferol in broiler chicks,J. Trace Element Exp. Med. 9, 117–132 (1996).CrossRefGoogle Scholar
  25. 25.
    N. A. Bakken, Dietary boron modifies the effect of vitamin D nutriture on energy metabolism and bone morphology in the chicks, MS thesis, University of North Dakota (1995).Google Scholar
  26. 26.
    F. H. Nielsen, L. M. Mullen, and S. K. Gallagher, Effect of boron depletion and repletion on blood indicators of calcium status in humans fed a magnesium-low diet,J. Trace Element Exp. Med. 3, 45–54 (1990).Google Scholar
  27. 27.
    F. H. Nielsen, S. K. Gallagher, L. K. Johnson, and E. J. Nielsen, Boron enhances and mimics some effects of estrogen therapy in postmenopausal women,J. Trace Element Exp. Med. 5, 237–246 (1992).Google Scholar
  28. 28.
    R. D. Tiegs, J. J. Body, H. W. Warmer, J. Barta, B. L. Riggs, and H. Health III, Calcitonin secretion in postmenopausal osteoporosis,N. Engl. J. Med 312, 1097–1100 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    P. K. Johnston, I. F. Hunt, N. Murphy, D. J. Baylink, and R. A. Clemens, Osteocalcin (OC), bone mineral content (BMC) and calcium intake in postmenopausal women,Fed. Proc. 46, 902 (1987).Google Scholar
  30. 30.
    C. D. Hunt, J. L. Herbei, and F. H. Nielsen, Metabolic responses of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium, and magnesium absorption and retention and blood mineral concentrations,Am. J. Clin. Nutr. 65, 803–813 (1997).PubMedGoogle Scholar
  31. 31.
    F. H. Nielsen, Dietary supplementation of physiological amounts of boron increases plasma and urinary boron of perimenopausal women,Proc. North Dakota Acad. Sci. 50, 52 (1996).Google Scholar
  32. 32.
    K. Warington, The effect of boric acid and borax on the broad bean and certain other plants,Ann. Bot. 37, 629–672 (1923).Google Scholar
  33. 33.
    A. L. Sommer and C. B. Lipman, Evidence on the indispensable nature of zinc and boron for higher green plants,Plant Physiol. 1, 231–249 (1926).PubMedCrossRefGoogle Scholar
  34. 34.
    W. D. Loomis and R. W. Durst, Chemistry and biology of boron,Biofactors 3, 229–239 (1992).PubMedGoogle Scholar
  35. 35.
    T. Matoh, Boron in plant cell walls,Plant and Soil 193, 59–70 (1997).CrossRefGoogle Scholar
  36. 36.
    D. G. Blevins and K. M. Lukaszewski, Proposed physiologic functions of boron in plants pertinent to animal and human metabolism,Environ. Health Perspectives 102 (Suppl. 7), 31–33 (1994).Google Scholar
  37. 37.
    I. Cakmak and V. Römheld, Boron deficiency-induced impairments of cellular function in plants,Plant and Soil 193, 71–83 (1997).CrossRefGoogle Scholar
  38. 38.
    F. H. Nielsen, Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation,FASEB J. 5, 2661–2667 (1991).PubMedGoogle Scholar
  39. 39.
    WHO/FAO/IAEA,Trace Elements in Human Nutrition and Health, World Health Organization, Geneva, pp. 175–179 (1996).Google Scholar
  40. 40.
    C. J. Rainey, R. E. Christensen, L. A. Nyquist, P. L. Strong, and J. R. Coughlin, Boron daily intake from the American diet,FASEB J. 10, A785 (1996).Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Forrest H. Nielsen
    • 1
  1. 1.United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand Forks

Personalised recommendations