Biological Trace Element Research

, Volume 66, Issue 1–3, pp 131–143 | Cite as

Distribution of boron in the environment

  • Peter Argust


The findings of a study to identify and quantify the orders of magnitude for major reservoirs and flows of boron (B) in the environment are outlined. The orders of magnitude for B reservoirs and flows arising through natural processes, such as the hydrological cycle and volcanism, are compared with those arising from anthropogenic activities, such as coal combustion and the extraction and use of borates for commercial purposes.

The major stores and reservoirs for B have been identified, in order of magnitude, as the continental and oceanic crusts (1018 kg B), the oceans (1015 kg B), groundwater (1011 kg B), ice (1011 kg B), coal deposits (1010 kg B), commercial borate deposits (1010 kg B), biomass (1010 kg B), and surface waters (108 kg B). The largest flows of B in the environment arise from the movement of B into the atmosphere from oceans, at between 1.3 * 109 kg and 4.5 * 109 kg B per annum. Other hydrological flows are also important. Drainage from soil systems into groundwaters and surface waters accounts for between 4.3 * 108 kg and 1.3 * 109 kg B per annum. B mining and volcanic eruptions represent the next most significant B flows, accounting for approx 4.0 * 108 kg and 3.0 * 108 kg B, respectively.

Index entries

Borates boron fossil fuels geological mechanisms hydrological cycle mass balance mining tectonic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Harben and R. L. Bates,Industrial Minerals: Geology and World Deposits, Metal Bulletin Plc., London (1990).Google Scholar
  2. 2.
    F. R. Hartley, C. Burgess, and R. M. Alcock,Solution Equilibria, Ellis Horwood, Chichester (1980).Google Scholar
  3. 3.
    R. B. Kistler and C. Helvaci, Boron and borates, inIndustrial Minerals and Rocks, 6th en., D. C. Carr, ed., Society for Mining, Metallurgy and Exploration, Littleton, CO, pp. 171–186 (1994).Google Scholar
  4. 4.
    D. L. Anderson, M. E. Kitto, L. McCarthy, and W. H. Zoller, Sources and atmospheric distribution of particulate and gas-phase boron,Atmospheric Environment,28,8, 1401–1410 (1994).CrossRefGoogle Scholar
  5. 5.
    V. Romheld and H. Marschner, Function of micronutrients in plants, inMicronutrients in Agriculture, no. 4,The Soil Society of America Book Series, J. J. Mortvedt et al., eds., Soil Society of America, pp. 297–328 (1991).Google Scholar
  6. 6.
    R. W. Sprague,The Ecological Significance of Boron, U.S. Borax & Chemical Corp., Los Angeles, CA (1972).Google Scholar
  7. 7.
    P. H. Kemp,The Chemistry of Borates, Part 1, Borax Consolidated Ltd., London (1956).Google Scholar
  8. 8.
    C. L. Christ, and H. Harder, B, inHandbook of Geochemistry (1974).Google Scholar
  9. 9.
    S. R. Taylor, and S. M. McLennan, The evolution of continental crust,Sci. Am. Jan. (1996).Google Scholar
  10. 10.
    J. C. Bartholemew, J. H. Christie, A. Ewington, P. J. M. Geelan, H. A. G. Lewis, P. Middleton, et al., eds.,The Times Atlas of the World, Times Books, London, (1990).Google Scholar
  11. 11.
    J. W. Mellor,Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry, vol. V,Boron, part A,Boron-Oxygen Compounds, Longman, London (1980).Google Scholar
  12. 12.
    J. E. Ferguson,Inorganic Chemistry and the Earth, Pergamon, Oxford, UK (1982).Google Scholar
  13. 13.
    E. M. Shaw,Hydrology in Practice, 3rd ed., Chapman and Hall, London, UK (1994).Google Scholar
  14. 14.
    R. G. Barry, The world hydrological cycle, inPhysical Hydrology, R. J. Chorley, ed., Methuen, London, UK (1971).Google Scholar
  15. 15.
    D. A. Livingstone,Chemical Composition of Rivers and Lakes, US Geological Survey (1963).Google Scholar
  16. 16.
    H. Helmann, and M. Schumacher, Phosphate, borate und nitrate-dynamik in Auftreten und Umsatz in Rheinstrom,Tenside Detergents,14,6, 321–325 (1977).Google Scholar
  17. 17.
    W. M. Edmunds, J. M. Cook, D. G. Kinniburgh, D. L. Miles, and J. M. Trafford, Traceelement Occurrence in British Ground Waters, British Geological Survey Research Report SD/89/3, British Geological Survey (1989).Google Scholar
  18. 18.
    M. Ford, R. Andrews, P. Noble, and K. Nicholson, Assessment of European Potable Water Quality with Respect to B Concentration and Major Ion Chemistry, Dames & Moore Report 9932.002 (1995).Google Scholar
  19. 19.
    C. L. Goetz, Aquifer Characteristics and Water Chemistry Data from Wells on or Near Najavo Tribal Lands in the Zuni River Basin and Arroyo Drainage, West Central New Mexico, US Geological Survey (1990).Google Scholar
  20. 20.
    R. Keren, and F. T. Bingham, B in water, soils and plants,Adv. Soil Sci. 1, 229–276 (1985).CrossRefGoogle Scholar
  21. 21.
    V. M. Shorrocks, Behaviour, Function and Significance of Boron in Agriculture, Report on an International Workshop at St. John’s College, Oxford, England, July 23–25, 1990, P. W. Arnold, G. A. Fleming, S. P. McGrath, W. Podlesak, and M. Silanpaa, contributors, Micronutrient Bureau, UK (1990).Google Scholar
  22. 22.
    F. H. Nielsen, Ultratrace elements,Food Sci. & Technol.,28, 357–428 (1988).Google Scholar
  23. 23.
    F. H. Nielsen, Other elements, inTrace Elements in Human and Animal Nutrition, 5th en., vol. 2, W. Mertz, ed., Academic Press, NY (1986).Google Scholar
  24. 24.
    D. L. Anderson, W. C. Cunningham, and T. R. Lindstrom, Concentrations and intakes of H, B, S, K, Na, Cl, and NaCl in Foods,J. of Food Composition Anal. 7, 59–82 (1994).CrossRefGoogle Scholar
  25. 25.
    T. Inoue, M. Iwaida, Y. Ito, S. Ogawa, K. Tajima, T. Mine, et al., A general survey on the borate contents in foods,J. Food Hygiene Soc. 21,6, Dec. (1980).Google Scholar
  26. 26.
    N. Myers,The Gaia Atlas of Planet Management, 2nd en., Gaia, London, UK (1994).Google Scholar
  27. 27.
    P. W. Argust, A Local Mass Balance for B, Part 2 of a Six Monthly Report for the EngD in Environmental Technology, University of Surrey (1996).Google Scholar
  28. 28.
    K. K. Bertine and E. D. Goldberg, Fossil fuel combustion and the sedimentary cycle,Science 173, 233–235 (1971).PubMedCrossRefGoogle Scholar
  29. 29.
    The British Petroleum Company,BP Statistical Review of World Energy, London, June (1995).Google Scholar
  30. 30.
    SRI International, Coal and coke products, inThe Chemical Economics Handbook, vol. 211.0000, SRI International.Google Scholar
  31. 31.
    T. R. Fogg and R. A. Duce, B in the troposphere: distribution and fluxes,J. Geophys. Res. 90, D2, 3781–3796 (1985).CrossRefGoogle Scholar
  32. 32.
    U. Forstner, Soil pollution phenomena: mobility of heavy metals in contaminated soil, inInteractions at the Soil Colloid-Soil Solution Interface, G. H. Bolt et al., eds., Kluwer (1991).Google Scholar
  33. 33.
    P. W. Harben, and E. M. Dickson, An Overview of the Economic and Market Outlook for Borates, Industrial Minerals (1984).Google Scholar
  34. 34.
    P. W. Argust, A Global Mass Balance for B, Part 1 of a Six Monthly Report for the EngD in Environmental Technology, University of Surrey (1996).Google Scholar
  35. 35.
    J. F. Cerbus, S. Landsberger, S. Larson, and M. J. Savoie, Coal Ash Leachate Potential from Stoker Boilers, US Army Corps of Engineers (1994).Google Scholar
  36. 36.
    W. Lawrence, Borax Europe Ltd., Private correspondence, Nov.24, 1997.Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Peter Argust
    • 1
  1. 1.Centre for Environmental StrategyUniversity of SurreySurreyUK

Personalised recommendations