Israel Journal of Mathematics

, 108:83 | Cite as

Examples of expandingC 1 maps having no σ-finite invariant measure equivalent to Lebesgue



In this paper we construct aC 1 expanding circle map with the property that it has no σ-finite invariant measure equivalent to Lebesgue measure. We extend the construction to interval maps and maps on higher dimensional tori and the Riemann sphere. We also discuss recurrence of Lebesgue measure for the family of tent maps.


  1. [1]
    J. Aaronson, M. Lin and B. Weiss,Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products, Israel Journal of Mathematics33 (1979), 198–224.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    H. Bruin,Induced maps, Markov extensions and invariant measures in onedimensional dynamics, Communications in Mathematical Physics168 (1995), 571–580.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    B. Derrida, A. Gervois and Y. Pomeau,Iteration of endomorphisms on the real axis and representation to numbers, Annales de l’Institut Henri Poincaré, Ser. A29 (1978), 305–356.MATHMathSciNetGoogle Scholar
  4. [4]
    K. Dajani and J. Hawkins,Examples of natural extensions of nonsingular endomorphisms, Proceedings of the American Mathematical Society120 (1994), 1211–1217.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    S. Eigen and C. Silva,A structure theorem for n-to-1endopmorphisms and existence of non-recurrent measures, Jurnal of the London Mathematical Society40 (1989), 441–451.CrossRefMathSciNetGoogle Scholar
  6. [6]
    P. Góra,Properties of invariant measures for piecewise expanding one-dimensional transformations, Ergodic Theory and Dynamical Systems14 (1994), 475–492.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    P. Góra and B. Schmitt,Un exemple de transformation dilatante et C 1 par morceaux de l’intervalle, sans probabilité absolument continue invariante, Ergodic Theory and Dynamical Systems9 (1989), 101–113.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    G. Gyögyi and P. Szépfalusy,Properties of fully developed chaos in onedimensional maps, Journal of Statistical Physics34 (1984), 451–475.CrossRefMathSciNetGoogle Scholar
  9. [9]
    T. Hamachi,On a Bernoulli shift with non-identical factor measures, Ergodic Theory and Dynamical Systems1 (1981), 273–284.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    T. Hamachi and M. Osikawa,Ergodic groups of automorphisms and Krieger’s theorems, Seminar on Mathematical Sciences. Keio Univeristy, 1981.Google Scholar
  11. [11]
    J. Hawkins and C. Silva,Remarks on recurrence and orbit equivalence of nonsingular endomorphisms, Dynamic Systems Proceedings, University of Maryland, Lecture Notes in Mathematics1342, Springer-Verlag, Berlin, 1988, pp. 281–290.Google Scholar
  12. [12]
    J. Hawkins and C. Silva,Non invertible transformations admitting no absolutely continuous σ-finite invariant measures, Proceedings of the American Mathematical Society111 (1991), 455–463.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. R. Herman,Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publications Mathématiques de l’Institut des Hautes Études Scientifiques49 (1979), 5–233.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    F. Hofbauer and G. Keller,Quadratic maps without asymptotic measure, Communications in Mathematical Physics127 (1990), 319–337.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    S. Kakutani,On equivalence of infinite product measures, Annals of Mathematics49 (1948), 214–224.CrossRefMathSciNetGoogle Scholar
  16. [16]
    Y. Katznelson,Sigma-finite invariant measures for smooth maps of the circle, Journal d’Analyse Mathématique31 (1977), 1–18.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Y. Katznelson,The action of diffeomorphism of the circle om the Lebesgue measure, Journal d’Analyse Mathématique36 (1979), 156–166.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    G. Keller,Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory and Dynamical Systems10 (1990), 717–744.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    G. Keller and T. Nowicki,Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Communications in Mathematical Physics149 (1992), 31–69.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    K. Krzyzewski and W. Szlenk,On invariant measures of expanding differentiable mappings, Studia Mathematica33 (1969), 83–92.MATHMathSciNetGoogle Scholar
  21. [21]
    A. Lasota and J. Yorke,On existence of invariant measures for piecewise monotonic transformations, Transactions of the American Mathematical Society186 (1973), 481–488.CrossRefMathSciNetGoogle Scholar
  22. [22]
    S. Lattès,Sur l’iteration des substitutions rationelles, Comptes Rendus de l’Académie des Sciences, Paris166 (1919), 26–28.Google Scholar
  23. [23]
    R. Mañé,Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987.MATHGoogle Scholar
  24. [24]
    D. Ornstein,On invariant measures, Bulletin of the American Mathematical Society66 (1960), 297–300.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    A. Quas,Non-ergodicity for C 1 expanding maps and g-measures, Ergodic Theory and Dynamical Systems16 (1996), 531–542.MATHMathSciNetGoogle Scholar
  26. [26]
    V. Rohlin,On the fundamental ideas of measure theory, American Mathematical Society Translations71 (1952), 1–54.MathSciNetGoogle Scholar
  27. [27]
    M. Rychlik,Bounded variation and invariant measures, Studia Mathematica76 (1983), 69–80.MATHMathSciNetGoogle Scholar
  28. [28]
    C. Silva and P. Thieullen,The sub-additive ergodic theorem and recurrence properties of Markovian transformations, Journal of Mathematical Analysis and Applications154 (1991), 83–99.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1998

Authors and Affiliations

  1. 1.Department of MathematicsRoyal Institute of TechnologyStockholmSweden
  2. 2.Department of MathematicsUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations