Israel Journal of Mathematics

, Volume 76, Issue 1–2, pp 81–95 | Cite as

An arbitrarily distortable Banach space

  • Thomas Schlumprecht
Article

Abstract

In this work we construct a “Tsirelson like Banach space” which is arbitrarily distortable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. Casazza and Th. J. Shura,Tsirelson’s space, Lecture Notes in Math. No. 1363, Springer-Verlag, Berlin, 1989.MATHGoogle Scholar
  2. 2.
    R. Haydon, E. Odell, H. Rosenthal and Th. Schlumprecht,On distorted norms in Banach spaces and the existence of l p -types, preprint.Google Scholar
  3. 3.
    R. C. James,Uniformly non-square Banach spaces, Ann. of Math.80 (1964), 542–550.CrossRefMathSciNetGoogle Scholar
  4. 4.
    J. L. Krivine,Sous espaces de dimension finie des espaces de Banach réticulés, Ann. of Math.104 (1976), 1–29.CrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Lemberg,Nouvelle démonstration d’un théorème de J.L. Krivine sum la finie représentation de l p dans un espace de Banach, Isr. J. Math.39 (1981), 341–348.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces I — Sequence Spaces, Springer-Verlag, Berlin, 1979.Google Scholar
  7. 7.
    V. D. Milman,Geometric theory of Banach spaces, II: Geometry of the unit sphere, Russian Math. Survey26 (1971), 79–163 (translated from Russian).CrossRefMathSciNetGoogle Scholar
  8. 8.
    E. Odell, personal communication.Google Scholar

Copyright information

© Hebrew University 1991

Authors and Affiliations

  • Thomas Schlumprecht
    • 1
  1. 1.Department of MathematicsThe University of Texas at AustinAustinUSA

Personalised recommendations