Journal of Molecular Neuroscience

, Volume 4, Issue 3, pp 185–193 | Cite as

Learning and sexual deficiencies in transgenic mice carrying a chimeric vasoactive intestinal peptide gene

  • Illana Gozes
  • John Glowa
  • Douglas E. Brenneman
  • Susan K. McCune
  • Eric Lee
  • Heiner Westphal
Article

Abstract

The molecular mechanisms responsible for behavior are largely unknown. A state of the art model, paving the path from genes to behavior, is offered by transgenic animals. Candidate molecules are classic neuropeptides, such as vasoactive intestinal peptide (VIP). Transgenic mice harboring a chimeric VIP gene driven by the polyoma promoter were produced. Behavioral studies revealed learning impairment and prolonged retardation in memory acquisition in the genetically altered animals. Furthermore, reduced performance was observed when the male transgenic mice were tested for sexual activity in the presence of receptive females. Surprisingly, radioimmunoassays showed an approx 20% decrease in the VIP content of the transgenic mice brains. To directly assess genetically reduced VIP content as a cause for learning impairment, transgenic mice carrying diphtheria toxia-encoding sequences driven by the rat VIP promoter were created. These animals had reduced brain VIP and exhibited deficiencies in learning abilities, strongly supporting an important neurobiological function for VIP in vivo.

Index Entries

VIP diphtheria toxin, polyoma promoter genetic manipulation VIP transgenic animals learning and memory, sexual behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agoston D. V., Eiden L. E., Brenneman D. E., and Gozes I. (1991) Spontaneous electrical activity regulates vasoactive intestinal peptide expression in dissociated spinal cord cell cultures.Mol. Brain Res. 10, 235–240.PubMedCrossRefGoogle Scholar
  2. Arimura A. (1992) Pituitary adenylate cyclase activating polypeptide (PACAP): discovery and current status of research.Regulatory Peptides 37, 287.PubMedGoogle Scholar
  3. Bodner M., Fridkin M., and Gozes I. (1985) VIP and PHM-27 sequences are located on two adjacent exons in the human genome.Proc. Natl. Acad. Sci. USA 82, 3548–3551.PubMedCrossRefGoogle Scholar
  4. Bohnlein E., Chowdhury K., and Gruss P. (1985) Functional analysis of the regulatory region of polyoma mutant F9-1 DNA.Nucleic Acids Res. 13, 4789–4809.PubMedCrossRefGoogle Scholar
  5. Brenneman D. E. and Eiden L. E. (1986) Vasoactive intestinal peptide and electrical activity influence neuronal survival.Proc. Natl. Acad. Sci. USA 83, 1159–1162.PubMedCrossRefGoogle Scholar
  6. Brenneman D. E., Nicol T., Warren D., and Bowers L. M. (1990) Vasoactive intestinal peptide: a neurotrophic releasing agent and astroglia mitogen.J. Neurosci. Res. 25, 386–394.PubMedCrossRefGoogle Scholar
  7. Csillag A., Zilles K., Schleicher A., and Hajos F. (1992) Matching localization of immunoreactive VIP and VIP receptor in the visual cortex.Neurosci. Soc. Abs. 18, 1451.Google Scholar
  8. Dixson A. F., Kendrick K. M., Blank M. A., and Bloom S. R. (1984) Effects of tactile and electrical stimuli upon the release of vasoactive intestinal polypeptide in the mammalian penis.J. Endocrinol. 100, 249–252.PubMedCrossRefGoogle Scholar
  9. Emson P. C., Fahrenkrug J., Schaffalitzky de Muckadell O. B., Jessel T. M., and Iverson, L. L. (1978) Vasoactive intestinal peptide (VIP) vesicular localization and potassium evoked release from rat hypothalamus.Brain Res. 143, 174–178.PubMedCrossRefGoogle Scholar
  10. Fink J. S., Verhave M., Walton K., Mandel G., and Goodman R. H. (1991) Cyclic-AMP and phorbol ester-induced transcriptional activation are mediated by the same enhancer element in the human vasoactive intestinal peptide gene.J. Biol. Chem. 266, 3882–3887.PubMedGoogle Scholar
  11. Giladi E., Shani Y., and Gozes I. (1990) The complete structure of the rat VIP gene.Mol. Brain Res. 7, 261–267.PubMedCrossRefGoogle Scholar
  12. Glowa J. R., Panlilio L. V., Brenneman D. E., Gozes I., Fridkin M., and Hill J. M. (1992) Learning impairment following intracerebral administration of the HIV envelope protein gp120 or a VIP antagonist.Brain Res. 570, 49–53.PubMedCrossRefGoogle Scholar
  13. Gozes I., Bodner M., Shani Y., and Fridkin M. (1986) Structure and expression of the vasoactive intestinal peptide (VIP) gene in a human tumor.Peptides 7, 1–6.PubMedCrossRefGoogle Scholar
  14. Gozes I. and Brenneman D. E. (1989) VIP molecular biology and neurobiological function.Mol. Neurobiol. 3, 1–36.CrossRefGoogle Scholar
  15. Gozes I. and Brenneman D. E. (1993) Neuropeptides as growth and differentiation factors in general and VIP in particular.J. Mol. Neurosci. 4, 1–9.PubMedCrossRefGoogle Scholar
  16. Gozes I. and Fridkin M. (1992) A fatty neuropeptide: potential drug for noninvasive impotence treatment in a rat model.J. Clin. Invest. 90, 810–814.PubMedGoogle Scholar
  17. Gozes I., Hill J. M., Mervis R. F., Fridkin M., and Brenneman D. E. (1990) VIP antagonist produces neuronal damage and retardation of behavioral development in neonatal rats.Neurosci. Soc. Abs. 16, 1292.Google Scholar
  18. Gozes I., Meltzer E., Rubinraut S., Brenneman D. E., and Fridkin M. (1989) Vasoactive intestinal peptide potentiate sexual behavior: inhibition by novel antagonist.Endocrinology 125, 2945–2949.PubMedCrossRefGoogle Scholar
  19. Gozes I., McCune S. K., Jacobson L., Warren D., Moody T. W., Fridkin M., and Brenneman D. E. (1991a) An antagonist to vasoactive intestinal peptide: effects on cellular functions in the central nervous system.J. Pharmacol. Exp. Therap. 257, 959–966.Google Scholar
  20. Gozes Y., Brenneman D. E., Fridkin M., Asofsky R., and Gozes I. (1991b) A VIP antagonist distinguishes VIP receptors on spinal cord cells and lymphocytesBrain Res. 540, 319–321.PubMedCrossRefGoogle Scholar
  21. Gozes I., Shani Y., and Rostene W. H. (1987) Developmental expression of the VIP-gene in brain and intestine.Mol. Brain Res. 2, 137–148.CrossRefGoogle Scholar
  22. Griep A. E. and Westphal H. (1990) Differentiation versus proliferation of transgenic mouse lens cells expressing polyoma large T antigen: evidence for regulation by an endogenous growth factor.New Biol. 2, 727–738.PubMedGoogle Scholar
  23. Heinrich G., Gros P., and Habener J. F. (1984) Glucagon gene sequence.J. Biol. Chem.,259, 14,082–14,087.Google Scholar
  24. Hill J. M., Gozes I., Hill J. L., Fridkin M., and Brenneman D. E. (1991) Vasoactive intestinal peptide antagonist retards the development of neonatal behaviors in the rat.Peptides 12, 187–192.PubMedCrossRefGoogle Scholar
  25. Lamperti E. D., Rosen K. M., and Villa-Komaroff L. (1991) Characterization of the gene and messages for vasoactive intestinal polypeptide (VIP) in rat and mouse.Molecular Brain Res. 9, 217–231.CrossRefGoogle Scholar
  26. Loren I., Emson P. C., Fahrenkrug J., Bjorklund A., Alumets J., Hakanson R., and Sundler F. (1979) Distribution of vasoactive intestinal polypeptide in the rat mouse brain.Neuroscience 4, 1953–1976.PubMedCrossRefGoogle Scholar
  27. Magistretti P. J., Morrison J. H., Shoemaker W. J., Sapin V., and Bloom F. E. (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism.Proc. Natl. Acad. Sci. USA 78, 6535–6539.PubMedCrossRefGoogle Scholar
  28. Mahon K. A., Chepelinsky A. B., Khillan J. S., Overbeek P. A., Piatigorsky J., and Westphal H. (1987) Oncogenesis of the lens in transgenic mice.Science 235, 1622–1628.PubMedCrossRefGoogle Scholar
  29. Maxwell I. H., Maxwell F., and Glode L. M. (1986) Regulated expression of a diphtheria toxin A-chain gene transfected into human cells: possible strategy for inducing cancer cell suicide.Cancer Res. 46, 4660–4664.PubMedGoogle Scholar
  30. Maxwell F., Maxwell I. H., and Glode L. M. (1987) Cloning, sequence determination and expression in transfected cells of the coding sequence for the tox 176 attenuated diphtheria toxin A chain.Molec. Cell. Biol. 7, 1576–1579.PubMedGoogle Scholar
  31. Moody, T. W., Zia, F., Dravi, M., Brenneman, D. E., Fridkin, M., Davidson, A., and Gozes, I. (1993) A vasoactive intestinal peptide antagonist inhibits non-small cell cancer growth.Proc. Natl. Acad. Sci. USA 90, 4345–4349.PubMedCrossRefGoogle Scholar
  32. Morris R. G. M., Anderson E., Lynch G. S., and Baudry M. (1986) Selective impairment of learning and blockade of long-term potentiation by anN-methyl-d-aspartate receptor antagonist, AP5.Nature 319, 774–776.PubMedCrossRefGoogle Scholar
  33. Morris R. G. M., Garrud P., Rawlins J. N. P., and O’Keefe J. (1982) Place navigation impaired in rats with hippocampal lesions.Nature 297, 681–683.PubMedCrossRefGoogle Scholar
  34. Nakamura T., Mahon K. A., Miskin R., Dey A., Kuwabara T., and Westphal H. (1989) Differentiation and oncogenesis: phenotypically distinct lens tumors in transgenic mice.New Biol. 1, 193–204.PubMedGoogle Scholar
  35. Ottesen B., Wagener G., Virag R., and Fahrenkrug J. (1984) Penile erection: possible role for vasoactive intestinal polypeptide.Br. Med. J. 288, 9–11.Google Scholar
  36. Rosselin G., Anteunis A., Astesano A., Boissard C., Gali P., Hejblum G., and Marie J. C. (1988) Regulation of vasoactive intestinal peptide receptor.Ann. NY Acad. Sci. (Said S. I. and Mutt, V., eds.),527, 220–237.PubMedCrossRefGoogle Scholar
  37. Said S. I. and Mutt V. (1970) Polypeptide with broad biological activity: isolation from small intestine.Science 169, 1217–1218.PubMedCrossRefGoogle Scholar
  38. Southern E. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98, 503–517.PubMedCrossRefGoogle Scholar
  39. Sweeney J. E., Hohmann C. F., Moran T. H., and Coyle J. T. (1988) A long acting cholinesterase inhibitor reverse spatial memory deficits in mice.Pharmacol. Biochem. Behav. 31, 141–147.PubMedCrossRefGoogle Scholar
  40. Tybulewicz V. L. J., Tremblay M. L., Lamarca M. E., Willemsen R., Stubblefield B. K., Winfield S., Zablocka B., Sidransky E., Martin B. M., Huang S. P., Mintzer K. A., Westphal H., Mulligan R. C., and Ginns E. I. (1992) Animal model of Gaucher’s diseae from targeted disruption of the mouse glucocerebrosidase gene.Nature 357, 407–410.PubMedCrossRefGoogle Scholar
  41. Upchurch M. and Wehner J. M. (1988) Differences between inbred strains of mice in Morris Water Maze Performance.Behav. Genet. 18, 55–68.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Illana Gozes
    • 1
  • John Glowa
    • 2
  • Douglas E. Brenneman
    • 3
  • Susan K. McCune
    • 3
  • Eric Lee
    • 4
  • Heiner Westphal
    • 4
  1. 1.Department of Chemical Pathology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Biopsychology Unit, Clinical Neuroendocrinology BranchNIMHBethesda
  3. 3.Section of Developmental and Molecular PharmarcologyLDN, NICHDBethesda
  4. 4.Laboratory of Mammalian Genes and DevelopmentNICHD, NIHBethesda

Personalised recommendations